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Abstract

I investigate how air pollution affects economic activity. Using over 600 mil-
lion phone-location-based foot traffic data points from SafeGraph, I conduct a
large-scale analysis to examine the causal effect of air pollution on activity pat-
terns across the US. Using changes in local wind direction as an instrumental
variable (IV) for air pollution, I find that a 1 µg/m3 increase in PM2.5 concen-
tration leads to a 0.50% decrease in economic activity, resulting in a nationwide
reduction of 43 million trips annually. The reductions are widespread across
different economic sectors, with recreational activities experiencing the largest
decline. The effect is more pronounced in higher-income counties and areas
with a larger share of children, suggesting greater awareness among wealthier
or more vulnerable populations.
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1 Introduction

Air pollution imposes significant costs on human well-being. Its negative impacts on

morbidity and mortality are well-documented (Currie and Neidell, 2005; He et al.,

2016; Deschenes et al., 2017; Deryugina et al., 2019). Air pollution can also influ-

ence daily behaviors, affecting decisions about where people go and what they do.

However, the extent to which air pollution affects economic activities remains largely

unexplored. Prior studies typically focus on specific types of activities, such as visits

to zoos, national parks, or movie theaters (Neidell, 2009; Keiser et al., 2018; He et

al., 2022). Yet, air pollution may have much broader effects, affecting other impor-

tant activites such as shopping and restaurant dining1. These widespread behavioral

changes can carry significant economic implications, as reductions in economic activ-

ity due to air pollution can also lower overall economic output. Quantifying these

broader effects of air pollution on daily activities is important for understanding its

impact on human welfare and for designing optimal environmental policies.

In this paper, I conduct the first large-scale estimation of the causal effect of

daily air pollution fluctuations on economic activity in the United States. Conven-

tional datasets on daily activities often focus on specific regions or sectors (e.g., hik-

ing, cycling, or zoo visits), making it difficult to assess the broader effects of air

pollution on economic activities. I address this issue using foot traffic data from

SafeGraph, which aggregates de-identified geospatial data from millions of US smart-

phones. My dataset combines over 600 million trips across a broad range of industries

with satellite-based air pollution data for the continental United States from 2018 to

2021. A primary identification concern when estimating the effect of air pollution is

endogeneity. For instance, existing estimates may be biased due to reverse causality,

as visitation-related traffic could increase local air pollution. To address this concern,

I use changes in wind direction as an instrumental variable (IV) for air pollution to

estimate its causal effect on daily activities.

I find that air pollution leads to statistically and economically significant reduc-

tions in daily activities. On average, a 1 µg/m3 (about 10 percent of the mean)

increase in PM2.5 concentration results in a 0.50% decrease in daily activities, result-

ing in a nationwide reduction of 43 million trips annually. A back of the envelope

calculation suggest that this corresponds to an annual welfare loss of $1.63 billion.

This reduction is significant across many industries, indicating that the effect of air

1In my sample, retail trade, accommodation and food services, and entertainment sectors are the
three largest sectors, accounting for more than 60% of trips.
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pollution on daily activities is more widespread than previously thought. Entertain-

ment and recreation activities experience the most substantial declines (a 1 µg/m3

increase in PM2.5 concentration results in a 0.87% decrease in recreational activi-

ties), likely due to the greater flexibility in recreational activities compared to other

daily routines. Furthermore, the reduction in visits is generally more pronounced for

outdoor facilities than for indoor ones. This is presumably because outdoor activi-

ties amplify the negative health effects of pollution due to increased respiration and

exposure.

I also examine the heterogeneity of responses to air pollution across different

income levels and demographic groups. The reduction in daily activities is more

pronounced in counties with higher incomes and larger proportions of children, sug-

gesting that wealthier or more vulnerable populations may have greater awareness

of elevated air pollution levels. I find that the Black population exhibits a smaller

behavioral response to air pollution, which may partially explain the greater negative

health impacts of air pollution on Black individuals compared to White individuals

(Alexander and Currie, 2017; Gillingham and Huang, 2021). While previous litera-

ture on environmental injustice has primarily focused on the unequal distribution of

pollution (Banzhaf et al., 2019; Jbaily et al., 2022), my findings emphasize the role

of avoidance behavior in exacerbating these disparities. Even when exposed to the

same levels of air pollution, low-income and minority groups are less likely to adjust

their behavior to mitigate exposure, which may further deepen environmental justice

issues. Given that these groups are disproportionately likely to live in more polluted

areas (Mikati et al., 2018; Heblich et al., 2021; Tessum et al., 2021), addressing this

unequal burden may require targeted policy interventions.

This paper has three main contributions. First, it provides the first large-scale

estimation of the causal effect of air pollution on daily activities in the United States.

Existing literature studying the effect of air pollution on daily activities is generally

based on a limited sample from a specific region (Bresnahan et al., 1997; Zivin and

Neidell, 2009), or a specific activity type, such as visits to national parks (Keiser et

al., 2018), camping (Gellman et al., 2022) or movie watching (He et al., 2022), which

makes the generalizability of these estimates unclear. In contrast, my analysis uses

nationwide phone-location data and examines a broader range of activities, making

it more representative than previous studies. My findings suggest that air pollution

leads to reductions in activities across most industries, indicating that the behavioral

response to air pollution is more widespread than previously understood.
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Second, this paper reinforces the importance of characterizing avoidance behavior

when quantifying the externalities of air pollution. The results show that individuals,

especially vulnerable groups, actively engage in self-protective behaviors to reduce

their exposure, such as spending more time at home. As a result, estimates that

ignore these behaviors are likely biased downward, since health impacts would be

greater without such avoidance actions. These avoidance responses also suggest that

the marginal disutility of pollution exposure outweighs the marginal utility people

derive from daily activities. Additionally, avoidance behavior itself can be costly,

either through increased expenditures (Ito and Zhang, 2020; Zhang and Mu, 2018)

or utility losses. For example, staying home and limiting daily activities can reduce

physical activity, leading to health issues such as obesity (Hankinson et al., 2010),

depression, and anxiety (Paluska and Schwenk, 2000), which impose further societal

costs. Lastly, behavioral changes can negatively impact GDP by disrupting key in-

dustries. Given that avoidance behavior is widespread, accurately quantifying these

effects is important for understanding the true costs of air pollution and determining

optimal policies.

Third, this paper investigates whether individuals respond to day-to-day pollu-

tion fluctuations, adding to the relatively understudied topic on avoidance behavior.

Previous studies show that air quality alerts prompt avoidance behavior (Neidell,

2009; Altindag et al., 2017). However, air quality warnings are rare and triggered

only when the Air Quality Index exceeds a certain level, while negative effects of

air pollution increase even before this threshold (Zivin and Neidell, 2009). There-

fore, how individuals respond to these alerts does not necessarily correspond to how

they respond to air quality itself. Without an air quality alert, individuals might

not be aware of the elevated pollution levels. My results are not solely driven by air

quality alerts, indicating that people adjust their activities in response to more com-

mon, everyday pollution fluctuations. This finding suggests that avoidance behavior

is more widespread than previously recognized, which in turn implies that the costs

of pollution are underestimated.

The rest of the paper is organized as follows. Section 2 describes the data and

provides summary statistics. Section 3 introduces the empirical strategy in detail.

Section 4 presents the main results, discusses the heterogeneity, explores potential

channels, and provides back-of-the-envelope calculation. Section 5 presents the ro-

bustness checks. Section 6 concludes.
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2 Data

The data used in the paper come from three main sources: mobile phone-based

economic activity data from SafeGraph, satellite-based air pollution from CAMS

global reanalysis (EAC4), and satellite-based weather data from EAC4 and ECMWF

Reanalysis (ERA5). The linkages and further details are described below.

2.1 Economic Activity Data

I obtain the economic activity data from SafeGraph2. The dataset includes informa-

tion collected from over 45 million smart mobile devices and covers over 3.6 million

Points of Interest (POI) across the United States. In total, I obtain over 600 million

trips from January 1, 2018, to December 30, 2021, across the United States.

SafeGraph conductes a data quality evaluation by comparing its demographic data

with the American Community Survey (ACS) data from the US Census and found

that their data are statistically representative of the population at the county level and

above (Squire, 2019; Chang et al., 2022). Therefore, for empirical analysis, I match

each location to its county based on latitude and longitude, and then aggregate visits

at the county level. After aggregating all visits at the county level, I have 4,561,337

county-day observations. Additionally, since the dataset includes industry categories

based on the North American Industry Classification System (NAICS) code, I was

able to analyze foot traffic to different categories separately. The number of county-

day observations for each category is shown in Table 13. As shown in Table A1,

the vast majority of trips documented in the SafeGraph data are business-related,

including visits to retail stores, hotels, restaurants, and entertainment facilities, which

account for 57% of the total raw visits.

Because this dataset does not contain socioeconomic and demographic informa-

tion about mobile device users for privacy protection reasons, I obtain county-level

population and income data from the United States Census Bureau. Since county

populations vary widely and more populated counties tend to have more visits, I use

visitation rates rather than raw visitation numbers as the dependent variable. To

calculate county-level visitation rates, I aggregated the total number of visits in each

county and then divided by the county’s total population.

2https://www.safegraph.com/. Accessed Sep 12, 2023.
3Note that the number of observations varies across categories because some counties may not

have facilities of certain types.
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2.2 Air Pollution Data

Although the United States Environmental Protection Agency (EPA) has been re-

porting air quality and other atmospheric data since 1970 and the number of pollutant

monitors has increased over the years, there are still limitations: more than half of

the monitors collect data on a 1-in-3 day schedule or 1-in-6-day schedule4, resulting in

a lack of data on certain days. Interpolating the missing data on these days can lead

to bias, as air quality on unmonitored days is found to be worse than on monitored

days due to strategic responses (Zou, 2021).

Therefore, rather than using monitor-based data, I use satellite-based air pol-

lution data from the EAC4 reanalysis database5. EAC4 reports PM2.5 and other

atmospheric data every 3 hours with a 0.75 × 0.75 (≈ 81km × 81km) resolution,

which is derived from the combination of satellite observation and computer simula-

tion of the atmosphere. I construct the county-level daily PM2.5 level in the following

manner: for counties that have multiple satellite data, I average the gridded values

overlapping each county; for counties that do not have satellite data, I interpolate

their PM2.5 levels using inverse distance weighting (IDW) base on their latitude and

longitude. Then, I match the visitation data with the air pollution data using county

code and date. Figure A1 shows the average county-level visit rates and PM2.5 levels

from January 1, 2018, to December 30, 2021. As a few counties do not have any

visitation data for leisure facilities from Safegraph, there are some missing values in

the figure.

2.3 Weather Data

The analysis in this paper contains a flexible set of control variables for weather,

including temperature, wind speed, and precipitation. Additionally, wind direction

is used as the instrument of PM2.5 concentrations.

Daily temperature, wind direction, and wind speed data are also obtained from

the EAC4 reanalysis database. I average the daily measures across all gird points in

a particular county to obtain the county-level daily measure. For counties without

satellite data, I interpolate their temperature, wind direction, and wind speed using

IDW based on their latitude and longitude. Specifically, wind direction and wind

4See EPA’s Sampling Schedule Calendar: https://www.epa.gov/amtic/sampling-schedule-c
alendar.Accessed October 10, 2022

5See https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-reanalysi

s-eac4?tab=overview. Accessed September 19, 2022.
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speed are constructed using the East-West wind vector (u-wind) and the North-

South wind vector (v-wind) provided in the database6. Wind direction is defined as

the direction the wind is blowing from.

In addition, I obtain precipitation data from the Copernicus ERA5 reanalysis

hourly databases. Precipitation data are reported on a 0.25 × 0.25 degrees grid (

≈ 27km× 27km). I constructed the county-level daily precipitation by averaging the

hourly data on a given day with grid points within a particular county. For counties

without satellite data, I interpolate their precipitation using IDW based on their

latitude and longitude.

2.4 Summary Statistics

Table 1 displays the summary statistics for the main estimation sample, which consists

of 4,561,337 county-day observations. The average daily visit rates7 to all POI within

a county is 69.93 per 1000 people8. The Retail Trade sector has the highest mean visit

rate at 22.50 per 1,000 people, followed by the Accommodation and Food Services

sector, which has a mean visit rate of 14.58 per 1,000 people. The average daily

concentration of PM2.5 is 11.48 µg/m39, with a standard deviation of 16.95.

6Note that wind directions and speed are vectors, so they cannot be averaged or interpolated
numerically. Therefore, when averaging or interpolating, I first take the average of the two vectors
and then calculate the average wind direction and wind speed using the average vectors.

7The raw number of visits before aggregating to the county level is reported in Table A1
8Note that the data from Safegraph were collected from over 45 million mobile devices, which is

around 14% of the US population.
9This is slightly higher than the average PM2.5 concentration calculated using EPA Ground

monitors. One possible explanation for this discrepancy is strategic monitor placement, as discussed
in Graginer et al. (2018).
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Table 1. Summary Statistics

Variables Mean SD N
Visit Rates (per 1,000 people)

All POIs 69.93 41.53 4,513,600
44-45: Retail Trade 22.50 14.28 4,506,558
72: Accommodation and Food Services 14.58 12.39 4,491,452
61: Educational Services 8.03 8.84 4,466,749
71: Arts, Entertainment, and Recreation 6.48 9.13 4,322,150
53: Real Estate and Rental and Leasing 5.73 7.44 3,858,106
62: Health Care and Social Assistance 4.88 3.86 4,449,158
81: Other Services 4.54 6.01 4,495,995
92: Public Administration 1.11 1.55 4,468,576
52: Finance and Insurance 0.73 0.72 4,282,607
48-49: Transportation and Warehousing 1.33 2.62 4,482,408
51: Information 0.46 0.78 3,944,703
42: Wholesale Trade 0.45 0.76 3,677,317
31-33: Manufacturing 0.87 2.43 3,875,683
54: Professional, Scientific, and Technical Services 0.41 0.48 4,040,757
22: Utilities 0.24 0.63 2,228,604
23: Construction 0.31 0.50 3,614,912
55: Management of Companies and Enterprises 0.31 1.70 1,383,221
21: Mining, Quarrying, and Oil and Gas Extraction 0.17 0.20 8,750
56: Administrative and Support and Waste Services 0.18 0.34 3,009,650
11: Agriculture, Forestry, Fishing and Hunting 0.11 0.27 658,854

Pollution
PM2.5 (µg/m3) 11.48 16.05 4,513,600

Weather
Temperature (°C) 13.61 10.71 4,513,600
Total Precipitation (mm) 0.30 0.69 4,513,600
Wind Direction (degrees) 193.49 94.62 4,513,600
Wind Speed (m/s) 2.72 1.55 4,513,600
Visibility (km) 17.52 3.93 4,513,600

Demographic
Population 105,050 336,537 4,513,600
Age under 5 (%) 5.84 1.19 4,512,144
Black (%) 4.56 7.29 4,512,144
Per Capita Income 26,011 6,214 4,512,144

3 Empirical Strategy

To investigate the impacts of air pollution on daily activities, I fit a fixed-effect

Ordinary Least Squares (OLS) using the equation:

log(
Yct

Popc
) = α× PM2.5ct +X

′

ctβ + σcy + ηcm + γw + θmy + ϵct (1)
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where c indexes county, t indexes time which is at the daily level, y indexes year, and

m indexes month. The outcome variable is the visit rate, which is calculated using

the visits to all leisure facilities in county c on date t (Yct) divided by the county

population in the year 2020 (Popc). Since the outcome variable is highly right-skewed,

I perform a log transformation. The coefficient of interest is PM2.5ct, which is the

average PM2.5 level in county c on date t. Control variableXit includes other weather

variables, such as temperature, precipitation, and wind speed. To minimize concerns

about autocorrelation, I include one lead and one lag of the weather controls, as well

as PM2.5 (OLS) or the instruments (IV). My results are robust to different forms of

weather controls.

In addition, I include a rich set of fixed effects, including county-by-year fixed

effect σcy, county-by-month fixed effect ηcm, month-by-year fixed effect θmy and day-

of-week fixed effect γw. Specifically, county-by-year fixed effects σcy pick up within-

year variations in county-level factors that determine visits but are not captured by

the control variables, such as demographic characteristics and economic conditions.

County-by-month fixed effects ηcm control for seasonal unobservables across counties,

such as different peak seasons due to different geographic features. Day-of-week fixed

effect γw pick up cyclical visit patterns within week. Lastly, month-by-year fixed

effect θmy captures the time-varying shocks that are common in each month, such as

economic recessions and pandemic outbreaks. I also examine the robustness of the

results by including different fixed effects. The standard errors are clustered at the

county level.

The coefficient α captures the impact of air pollution on economic activities. The

identification assumption is that, conditional on control variables and fixed effects

included in equation (1), unobserved determinants of visit rates (ϵct) are independent

of variation in PM2.5. Although high-frequency air pollution is relatively more ran-

dom than long-term trends, some sources of endogeneity could still bias the estimate

of α. First, there could be omitted variables that correlate with both ambient air

pollution and economic activity. For example, a local event in a community could

increase local PM2.5 levels by raising traffic, while simultaneously affecting economic

activity by altering individuals’ time allocation. Additionally, although the reverse

causality between economic activities and air pollution is arguably weak, it cannot

be completely ruled out. For instance, if people choose to stay home instead of going

out, the resulting decrease in economic activities could also reduce local air pollution.

To address this concern, I leverage the pollution variation due to changes in wind
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patterns to identify pollution impacts. Specifically, since wind directions are random,

I use the changes in wind direction as an instrumental variable for air pollution

to derive the causal relationship (Deryugina et al., 2019). The assumption of this

approach is that after controlling for covariates and fixed effects, changes in wind

direction only affect people’s economic activity through their effects on air pollution.

The specification for the first stage is:

PM2.5ct =
∑
g∈G

3∑
b=0

γg
b1[Gc = g]×WindDir90bct +Xctβ+σcy+ηcm+γw+θmy+ ϵct (2)

In equation (2), the instrument variable is constructed in the following manner.

WindDir90bct equals 1 if wind direction in county c falls in the 90-degree interval [90b,

90b+90) and 0 otherwise. To allow the effect of the wind instruments on PM2.5, de-

noted as γg
b , to vary across geographic regions, I use the K-means clustering algorithm

to classify counties into 20 spatial groups based on their latitude and longitude. The

clustering result is shown in Figure A3. 1[Gc = g] equals 1 if county c is classified

into monitor group g and 0 otherwise. Other control variables Xct and fixed effects

are defined as in equation (1).

Equation (2) restricts the effect of wind direction on pollution to be the same for all

counties within each geographic cluster. Intuitively, non-local sources located outside

of the cluster are more likely to have similar effects on pollution levels in all (or most)

counties in the cluster group. As a result, Equation (2) is more likely to capture

the pollution variation driven by non-local sources. This is advantageous because

pollution driven by local sources may not affect all individuals residing within the area

in the same way, leading to measurement error10. In section 5, I provide evidence that

the pollution variation I employed is primarily driven by non-local sources. Therefore,

the effect of wind direction on pollution should be similar for all counties in the same

geographic group. I employ 4 bins and 20 clusters for computational ease. The results

are robust to varying the number of wind direction bins and geographic clusters (Table

A5).

10Consider a local pollution source located in the center of a cluster. When the wind blows from
the west, counties to the west of this source will record low pollution levels, and counties to the east
will record high pollution levels. On net, a researcher who uses such variation may conclude that
short-term pollution fluctuations have no effect on visit rates to leisure facilities.
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4 Results

4.1 Main Effect

I find a significant negative relationship between air pollution and economic activities.

Table 2 displays the results from both fixed-effects models and instrumental variable

models. For the IV strategy, I use daily changes in county-level wind direction as an

instrument for daily changes in county-level PM2.5 concentrations. The first-stage

F-statistic in Column 2 is 118.3, which implies the issue of the weak instrument is not

a problem in this approach. Since PM2.5 is endogenous, I rely on the IV approach as

the preferred empirical strategy. The estimate in Column 2 implies that a 1 µg/m3

increase in PM2.5 leads to a 0.50% decrease in visit rates on average. In addition,

Table 2 shows that warmer temperatures increase visit rates, whereas precipitation

and strong wind reduce visit rates.

The IV estimate in Column 2 is substantially larger than the OLS estimate in Col-

umn 1, suggesting that OLS estimation suffers from significant bias. This downward

bias is common in quasi-experimental studies on air pollution and is generally thought

to be, at least in part, due to measurement errors in pollution exposure (Deryugina

et al., 2019; Alexander and Schwandt, 2022).
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Table 2. Effect of PM2.5 on Daily Visit Rates

(1) OLS (2) IV
log(visit rate) × 100 log(visit rate) × 100

PM2.5 (µg/m3) -0.01∗∗∗ -0.50∗∗∗

(0.00) (0.02)
Temperature (°C) 0.16∗∗∗ 0.25∗∗∗

(0.00) (0.01)
Precipitation (mm) -2.40∗∗∗ -1.98∗∗∗

(0.03) (0.03)
Wind speed (m/s) -0.50∗∗∗ -0.82∗∗∗

(0.01) (0.02)
First-stage F stat 123.7
Dependent Variable Mean 6.99 6.99
Fixed Effects Yes Yes
R2 0.89 0.88
Observations 4,507,400 4,507,400

Notes: This table reports the OLS and IV estimates using equation (1) and (2). The

dependent variable is the log of visit rates at all POIs. All coefficient estimates are

multiplied by 100 to demonstrate the effect in percentage points. All regressions control

for temperature, precipitation, and wind speed; one lead and one lag of these weather

controls. OLS (IV) estimates also include one lag and one lead of PM2.5 (instruments).

Dependent variable mean is the average visit rate in percentage terms. Fixed effects

include county-by-year, county-by-month, day-of-week, and year-by-month FE. Stan-

dard errors are clustered at the county level. ***p < 0.01; **p < 0.05; *p < 0.1.

4.2 Heterogeneity

Heterogeneity across Industries The effect estimated in the main results might

conceal variations across different industries. To provide a comprehensive view, I

use the extensive coverage of the SafeGraph dataset to examine the impact of air

pollution on various industries (defined by 2-digit NAICS codes). Using the same IV

model as in the main analysis, I separately estimate the effects for each industry. The

raw number of visits and percentage of each industry in my sample can be found in

Table A1.

As shown in Figure 1, activities in most industries are negatively affected by

air pollution. Among them, recreation activities (NAICS code 71) experience the

largest decline in visits. This is likely because recreational activities are more flexible

compared to work commitments. Therefore, when pollution levels are high, people

can easily cancel their recreational plans and stay at home. The second most affected

industry is educational services, which involves primary schools. This suggests that
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vulnerable groups, such as young children, may be more responsive to air pollution.

Figure 1. Heterogeneity by 2-digit NAICS Codes

Notes: This figure displays the heterogeneous treatment effects of air pollution on daily activities
across various industries, categorized by their 2-digit NAICS codes. The percentage following each
industry name indicates the share of raw visits that the industry represents in the sample. Points
represent the estimates, and horizontal lines represent the 95% confidence intervals. The vertical
blue dashed line represents the average effect in the main results for all POIs. Industries with raw
visits accounting for less than 0.1% are omitted from the figure due to large variance.

In addition, for the most affected industry—Arts, Entertainment, and Recre-

ation—I separately estimate the effects for each facility type (defined by 6-digit

NAICS codes). The percentage of each facility type in my sample can be found

in A2. As shown in Figure 2, air pollution reduces activities in all of the outdoor fa-

cilities11. and most of the indoor facilities12, with the exception of a slight increase in

bowling centers. Moreover, the reduction in outdoor facilities is generally greater than

11Roughly 67% of recreational facilities in my dataset are outdoors, largely because nature parks
constitute a significant portion of the data. I divided only the recreational sector into outdoor and
indoor categories because (1) it exhibits the largest declines, and (2) other sectors, such as food
services and retail trade, are predominantly indoor or a mix of indoor and outdoor settings.

12He et al. (2022) suggest that the negative effect on indoor facilities is mainly due to pollution
exposure during transportation to the destination.
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in indoor facilities. This is likely because engaging in outdoor activities intensifies

the negative health effects of air pollution due to increased respiration and exposure.

Lastly, golf courses experience the largest decline in visits. This might stem from

golf’s popularity among the urban rich, further suggesting that higher-income groups

could be more responsive to air pollution.

Figure 2. Heterogeneity in Recreational Facilities

Notes: The figure displays the heterogeneous treatment effect of air pollution on visit rates at
recreational facilities, including outdoor ones (in blue, such as golf courses, nature parks, and
racetracks) and indoor ones (in red, such as fitness centers, casinos, and bowling centers). Points
represent the estimates, and horizontal lines represent the 95% confidence intervals.
Establishments with raw visits less than 0.1% are omitted from the figure due to large variance.

I also estimate the effect of air pollution on the Health Care and Social Assistance

sector. As shown in Figure 3, the impact on all health-related industries is smaller,

at roughly one-fifth of the reduction observed for recreation facilities. This finding

contradicts my initial assumption that hospital visits would increase with worsening

pollution. One possible reason for this result is the absence of a separate NAICS cat-

egory specifically for respiratory-related visits; therefore, any increase in respiratory

or related emergency visits may be masked by a decrease in visits for other types

of medical services. Likewise, the increase in visits by vulnerable groups could be
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obscured by an overall decline in visits for unrelated healthcare services. To further

examine the effect on vulnerable groups, I limit my sample to counties with an elderly

population above the third quartile. As shown in Figure 4, after this adjustment, the

estimates generally shift from negative to less negative or positive. Additionally, there

is a significant increase in visits to outpatient care centers and other individual and

family services.

Figure 3. Heterogeneity in Health Care Facilities

Notes: The figure displays the heterogeneous treatment effect of air pollution on visit rates at
health facilities. Points represent the estimates, and horizontal lines represent the 95% confidence
intervals. The vertical blue dashed line represents the estimates for overall visits, and the red
vertical line indicates zero. Establishments with raw visits less than 0.1% are omitted from the
figure due to large variance.
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Figure 4. Heterogeneity in Health Care Facilities for Counties with Elderly Population
Above the Third Quartile

Notes: This figure shows the heterogeneous treatment effect of air pollution on visit rates at health
care facilities in counties where the elderly population is above the third quartile. The points
represent the estimated effects, while the horizontal lines show the 95% confidence intervals. The
vertical blue dashed line represents the estimates for overall visits, and the red vertical line
indicates zero. Facilities with raw visit rates below 0.1% are excluded due to high variance.

Heterogeneity across Demographic Groups A growing literature shows that

exposure to air pollution and other environmental risks is unequally distributed across

different groups of individuals (Mohai et al., 2009; Hsiang et al., 2019). To examine

whether the effects of air pollution differ across income groups, I categorize counties

into two income groups: low income (below the national median) and high income

(above the national median), and include their interaction with PM2.5 levels13. As

shown in Panel A of Table 3, the estimated coefficient for the interaction is negative

and statistically significant at the 99% level. This indicates that high-income counties

have greater sensitivity to air pollution in their activities14. Furthermore, if I focus

13Since PM2.5 is endogenous, the interaction of PM2.5 and the income group dummy is instru-
mented using wind directions.

14It is important to note that higher-income counties have a slightly higher average visit rate
initially: 7.08% versus 6.84% in lower-income counties. The decrease is proportional to the mean
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on counties with income higher than the third quartile, the magnitude of the estimate

becomes larger. This result suggests that as income increases, the avoidance response

to air pollution also increases. One possible interpretation is that individuals in high-

income counties have a better awareness of the negative impact of air pollution.

Children and infants are among the most susceptible to air pollution (Aragón et

al., 2017; Jayachandran, 2009) because lung development continues throughout ado-

lescence, making developing lungs particularly at risk from exposure to toxins (Dietert

et al., 2000). I investigate the potential influence of a county’s age composition on

pollution avoidance behavior by using the proportion of children below 5 years old.

Similar to the income categorization, counties are grouped based on their percentage

of children below 5: fewer children (below median) and more children (above median).

Their interaction with PM2.5 levels is included in the regression. In Panel B of Table

3, the estimated coefficient for the interaction term is negative and statistically signif-

icant, indicating that vulnerable groups, such as young children, are more responsive

to air pollution.

Lastly, I investigate whether different racial groups respond differently to air pol-

lution. Similar to the income and age categorization, counties are grouped based on

their percentage of Black population: fewer Black people (below median) and more

Black people (above median). Their interaction with PM2.5 levels is included in the

regression. As shown in Panel C of Table 3, counties with a higher percentage of Black

people (above the third quartile) respond less to air pollution. Literature shows that

air pollution has larger health effects on Black people than on White people (Currie

and Walker, 2011; Chay and Greenstone, 2003). This disparity may be partly due

to the different magnitude of avoidance behavior, where Black people respond less

to air pollution, leading to greater exposure and consequently larger negative health

impacts.

visit rates.
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Table 3. Heterogeneous Effect of PM2.5 across Different Groups

(1) (2)
log(visit rate) × 100 log(visit rate) × 100

Panel A: Different Income Group
PM2.5 (µg/m3) -0.16∗∗∗ -0.28∗∗∗

(0.03) (0.02)
PM2.5 × 1{Inc. > Median} -0.61∗∗∗

(0.04)
PM2.5 × 1{Inc. > 3rd Quartile} -0.71∗∗∗

(0.07)
Panel B: Different Age Group
PM2.5 (µg/m3) -0.37∗∗∗ -0.40∗∗∗

(0.04) (0.03)
PM2.5 × 1{Pct. Children > Median} -0.34∗∗∗

(0.10)
PM2.5 × 1{Pct. Children > 3rd Quartile} -0.60∗∗∗

(0.13)
Panel C: Different Race Group
PM2.5 (µg/m3) -0.56∗∗∗ -0.55∗∗∗

(0.04) (0.03)
PM2.5 × 1{Pct. Black > Median} 0.10

(0.04)
PM2.5 × 1{Pct. Black > 3rd Quartile} 0.18∗∗∗

(0.04)
First-stage F stat 113.5 113.5
Dependent Variable Mean 6.99 6.99
Fixed Effects Yes Yes
R2 0.88 0.88
Observations 4,505,946 4,505,946
Notes: This table reports the effect of daily PM2.5 on daily activities for different income groups using equation (1) and equation

(2). The dependent variable is the log of the visit rates in county c at date t. All coefficient estimates are multiplied by 100 to

demonstrate the effect in percentage points. The dummy variable 1{Income > Median} = 1 (1{Income > 3rd Quartile} = 1)

if personal income in county c is higher than the median (third Quartile). Similarly, 1{Pct. Children > Median} and 1{Pct.

Children > 3rd Quartile} are dummies for the percentage of children, and 1{Pct. Black > Median} and 1{Pct. Black > 3rd

Quartile} are dummies for the percentage of the Black population. The dependent variable mean is the average visit rate in

percentage terms. Fixed effects include county-by-year, county-by-month, day-of-week, and month-by-year FE. Standard errors

are clustered at the county level.

4.3 Intertemporal Substitution

I further investigate the possibility of more dynamic behavioral responses to air pol-

lution by examining whether the decrease in economic activity is offset by an increase

on subsequent days or exacerbated by a further decline. For instance, people might

adjust the timing of their activities rather than reducing them altogether, or they
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might exhibit inertia, staying home on subsequent days even after pollution levels

have improved. I use the following distributed lag model to capture this relationship:

log

(
Yct

Popc

)
=

k∑
τ=0

ατPM2.5c,t−τ +Xctβ + σcy + ηcm + γw + θmy + ϵct (3)

where Yct is the number of visits in county c on date t, and PM2.5c,t−τ represents

either contemporaneous pollution exposure (τ = 0) or lagged pollution exposure

(τ ≥ 1). The weather controls and fixed effects are defined the same as in Equation

(1).

However, since pollution levels on consecutive days are highly correlated, simply

including lagged variables in the regression can cause severe multicollinearity prob-

lems. To address this issue, a quadratic distributed lag model is applied to estimate

the temporal lagged effect of pollution15. The model assumes that the effect over

time follows a smooth quadratic function, which is a relatively benign assumption.

Specifically, for a quadratic lag function, the lag coefficients are defined as:

ατ = γ0 + γ1τ + γ2τ
2 (4)

where τ represents the number of lags in the model, and γ0, γ1, γ2 describe the lag

weights. In my case, τ = 5. Substituting Equation (4) into Equation (3), we obtain:

log

(
Yct

Popc

)
=

k∑
τ=0

(γ0 + γ1τ + γ2τ
2)PM2.5c,t−τ +Xctβ + σcy + ηcm + γw + θmy + ϵct

=γ0

k∑
τ=0

PM2.5c,t−τ + γ1

k∑
τ=0

τPM2.5c,t−τ + γ2

k∑
τ=0

τ 2PM2.5c,t−τ

+Xctβ + σcy + ηcm + γw + θmy + ϵct (5)

or:

log

(
Yct

Popc

)
=γ0z

0
t + γ1z

1
t + γ2z

2
t +Xctβ + σcy + ηcm + γw + θmy + ϵct (6)

15A similar estimation strategy was adopted by Barwick et al. (2024), Burkhardt et al. (2019),
and Fan (2024).
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where:

z0t =
k∑

τ=0

PM2.5c,t−τ , z1t =
k∑

τ=0

τPM2.5c,t−τ , z2t =
k∑

τ=0

τ 2PM2.5c,t−τ (7)

The coefficients on the lagged variables can be recovered from Equation (4), and

standard errors are computed using the delta method. The instruments for these en-

dogenous pollution variables {zct} are constructed analogously to Equation (2), except

that the lagged endogenous pollution variables are replaced with the corresponding

lagged vector of exogenous instrumental variables.

As shown in Figure 5, the contemporaneous effects of air pollution are the largest,

followed by a 50% negative effect on the following day. The negative coefficient re-

mains significant up to two-day lags. Instead of compensating for the loss in economic

activity during pollution episodes, individuals exhibit inertia, staying home even when

pollution levels decline. This behavior further amplifies the negative economic impact

of pollution.
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Figure 5. Intertemporal Dynamics of the effect of PM2.5 on Daily Activities

Notes: This figure displays the intertemporal dynamics of the effect of 1 µg/m3 increase in PM2.5
on economic activities. Quardratic spline is used to constrain the relationship of inter-temporal
effects. Point estiamtes are shown in blue. horizontal bar shows the 95% confidence intervals.

4.4 Mechanisms

In this section, I explore two potential mechanisms through which air pollution reduce

daily activities. First, individuals may respond to Air Quality Index (AQI) warnings.

A second potential mechanism is that individuals spend more time at home on days

with poor visibility.

AQI Advisories AQI is an index that spans from 0 to 500, created by the EPA to

tell the public how polluted the air is. Real-time AQI information is disseminated to

the public through various channels, such as website portals (www.airnow.gov) and

mobile applications. An AQI value of 100 generally corresponds to the national air

quality standard for the pollutant, which is the level EPA has set to protect pub-

lic health16. Table A4 displays the behavioral guidelines and PM2.5 concentrations

16source: https://www.epa.gov/outdoor-air-quality-data/air-data-basic-information.
Accessed March 30, 2023
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associated with each category.

When PM2.5 concentrations exceed 35.5 µg/m3, air quality is considered un-

healthy (code orange), and information about unhealthy air quality appears on most

weather applications or websites (see Figure A2 for an example). Therefore, I use a

regression discontinuity (RD) Design to estimate the causal effect of AQI advisories:

the real-time PM2.5 levels serve as the running variable, and the data are examined

on either side of the 35.5 µg/m3 cutoff. One main assumption is that there is no

manipulation at the cutoff, which is reasonable since PM2.5 values are automatically

recorded by monitors. Figure A4 further supports the validity of this assumption.

Additionally, since AQI advisories are based on data from EPA’s outdoor monitors,

I switch to monitor-based PM2.5 data for the following estimation17.

Table 4 summarizes the results across different bandwidth and kernel selections. I

find that there is a negative effect of air quality advisories on visit rates, but this effect

is imprecisely estimated and not significant. Similarly, in Figure 6, there does not

appear to be a significant discontinuity at the cutoff point. One potential explanation

for this result is the small number of observations around the threshold; in my sample,

only 0.34% of the data points are above the 35.5 µg/m3 (equivalent to AQI 100)

threshold. Another explanation is that individuals respond more only at higher alert

thresholds. For example, Neidell (2009) and Zivin and Neidell (2009) show that

smog alerts (issued when ozone is forecasted above 0.2 ppm, equivalent to AQI 300)

in California prompt avoidance behavior. However, there is even less data around

higher alert thresholds. Lastly, although AQI categories and health concerns are

defined uniformly across the US, different states have different criteria for issuing air

quality alerts or advisories, which could make the estimate less precise.

17Since some counties do not have monitors, there are 601,894 observations from January 1, 2018
to December 30, 2021.
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Table 4. Estimation Results from RD of AQI Advisories

(1) (2) (3) (4) (5) (6)
AQI Advisories -4.3 -4.9 -3.0 -4.6 -5.1 -2.7

(3.9) (2.7) (1.9) (3.8) (2.6) (1.8)
Kernel Triangular Triangular Triangular Uniform Uniform Uniform
Bandwidth 5 10 20 5 10 20
Dependent Variable Mean 7.60 7.60 7.60 7.60 7.60 7.60
Observations 695,494 695,494 695,494 695,494 695,494 695,494
Effective Observations 2,990 7,500 45,135 2,990 7,500 45,135

Notes: This table presents RD estimates with PM2.5 as the running variable and a cutoff at

35.5 µg/m3 (equivalent to AQI 100). The dependent variable is the log of visit rates to all

POIs. All coefficient estimates are multiplied by 100 to demonstrate the effect in percentage

points. The dependent variable mean is the average visit rate in percentage terms.

Figure 6. Visit Rates by PM2.5 levels

Visibility The same pollutants that contribute to PM2.5 can also reduce visibility:

pollution particles affect visibility by altering the way light is absorbed and scattered

in the atmosphere, reducing the clarity and color of what we see18. When visibility is

low, people might perceive that the air quality is poor and choose to spend more time

at home instead of going out. To test this channel, I use satellited-based visibility

data from NCEP North American Regional Reanalysis database (NARR)19 and apply

a 2SLS-style analysis. In the 2SLS-style analysis, I use PM2.5 level as an instrument

18Source: https://www.epa.gov/sites/default/files/2015-05/documents/haze_brochure_
20060426.pdf. Accessed June 10, 2024.

19See https://psl.noaa.gov/data/gridded/data.narr.html. Accessed July 18, 2024.
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of visibility and then regress visit rates on the predicted visibility at the second stage.

Specifically, I use the following two stage specification:

V isiblityct = PM2.5ct +Xctβ + σcy + ηcm + γw + θmy + ϵct (8)

log(
Yct

Popc
) = α× V isiblityct +X

′

ctβ + σcy + ηcm + γw + θmy + ϵct. (9)

The results are reported in Table 5. Column 1 shows the positive and significant

correlation in the first stage. The F-stage is far larger than 10, indicating that there

is no weak instrument problem. Columns 2 report the results of the second stage:

a 1 km decrease in visibility leads to 5.37% decrease in visit rates. These results

are consistent with Keiser et al. (2018), who find that visitors decrease visitation to

national parks on days with poor visibility.

Table 5. Effect of Visibility on Visit Rates

(1) (2)
First Stage Second Stage
Visibility log(visit rate) ×100

Visibility (km) 5.15∗∗∗

(0.81)
PM2.5 (µg/m3) -0.24∗∗∗

(0.03)
First-stage F stat 675.3
Dependent Variable Mean 17.52 6.99
Fixed Effects Yes Yes
R2 0.48 0.84
Observations 4,507,400 4,507,400

Notes: This table reports the results of effect of visibility on visit rates using equation
(8) and (9). All coefficient estimates are multiplied by 100 to demonstrate the effect
in percentage points. All regressions control for temperature, precipitation, and wind
speed, including one lead and one lag of these weather controls. The dependent variable
mean in column (1) is the average visibility, and the dependent variable mean in column
(2) is the average visit rate in percentage terms. Fixed effects include county-by-year,
county-by-month, day-of-week, and year-by-month fixed effects. Standard errors are
clustered at the county level. ***p < 0.01; **p < 0.05; *p < 0.1.

4.5 Welfare Analysis

In this study, I present novel evidence on individuals’ daily adjustments in response to

air pollution. A one µg/m3 increase in PM2.5 leads to a 0.5% reduction in economic
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activities. The behavioral responses I observe are relatively smaller compared to

existing literature on avoidance behaviors. For example, Zivin and Neidell (2009)

find that ozone alerts reduce visits to zoos and observatories in Los Angeles by 5–8%,

and He et al. (2016) find that an API above 100 reduces movie theater admissions by

2.26%.

This finding is not surprising for two reasons. First, existing literature typically fo-

cuses on recreational activities, such as visiting zoos and watching movies—activities

more likely to experience larger declines—whereas my study examines a broader range

of daily activities, where effects are expected to be smaller. Second, previous studies

often focus on air quality alerts, which tend to elicit stronger responses, while my

study captures behavioral changes in more common, day-to-day settings. My results

are most comparable to Fan (2024), who find that a 10 µg/m3 increase in PM2.5

leads to a 1.4% reduction in outdoor exercise.

This study reveals an important social cost of air pollution that has been over-

looked in previous research. Air pollution is costly not only due to direct health

consequence, but also because the economic consequence resulting from behavioral

changes in a daily setting. In this section, I put the results into context by generating

some back-of-the-envelope estimates of the economic costs associated with the decline

in daily activities due to air pollution. To understand the economic implications, I

estimate the following equation

log(Incomecy) = β · log( Yct

Popc
) + σc + ηy + ϵcy (10)

where Incomecy is the personal income per capita in county c in year t, and V isitRatescy

is the average visit rates in county c in year t. The coefficient of interest, β, represents

the association between county daily activities and county income per capita. The

estimated coefficient is 0.018 with a standard deviation of 0.004, indicating that a

one percent decrease in daily activities is associated with a one percent decrease in

personal income per capita.

In the previous section, I show that a 1 µg/m3 increase in PM2.5 decreases daily

activities by 0.50% on average. Therefore, this is associated with a 0.009%20 decrease

in personal income per year. The average personal income per capita is $64, 665 in

the US, which translates to an income loss of $5.80 per person per year. This implies

a total loss of approximately $1.93 billion21 annually across the entire US. Since daily

200.5%× 0.018 = 0.009%
21The World Bank reported a total population of 331.9 million in the United States in 2021.
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activities also contribute to physical (e.g., reducing obesity) and psychological well-

being (e.g., reducing depression), this estimate is likely a lower bound.

The estimated welfare impact of air pollution on daily activities is relatively minor

compared to other air pollution cost estimates. For example, the World Bank esti-

mated that the welfare cost of air pollution in the United States was around $886.5
billion in 2016 ($1,080.96 billion in 2022 USD). However, these two estimates are not

directly comparable. The World Bank’s estimate assesses the aggregated cost of air

pollution on human health and the environment, while the decrease in daily activities

represents only a tiny fraction of this overall cost. As people become more educated

about the impacts of pollution, the costs associated with the reduction in daily activ-

ities are expected to increase. However, the cost of pollution related to mortality and

morbidity might decrease due to more widespread adoption of avoidance behaviors.

A more meaningful comparison would be with two recent papers on avoidance

behaviors. Zhang and Mu (2018) estimates the cost of defensive expenditures on

face masks during heavily polluted periods to be $187 million USD, and Fan (2024)

estimates the cost of physical inactivity, as it relates to major non-communicable

diseases, to be $0.55 billion USD in 2017. There are two reasons why my estimated

costs are larger, despite smaller declines in daily activities. First, previous studies

focus on the costs of specific avoidance behaviors, such as purchasing face masks or

reducing outdoor exercise, whereas my estimate captures a more general cost. Second,

previous analyses examine the costs associated with heavily polluted days, which

occur only a few times a year, while my analysis considers behavioral adjustments to

everyday pollution, which occurs consistently throughout the year.

5 Robustness Checks

In this section, I first test the validity of the IV. IV estimates can be interpreted as

the local average treatment effect (LATE) when the monotonicity assumption holds

(Angrist and Imbens,1995). In this paper, this assumption will be satisfied if every

county within a geographic cluster group experienced a change in pollution in the same

direction when the wind blows from a 90-degree direction bin, and will be violated if

some counties experience changes in different directions with others counties within

the same cluster group. One way Deryugina et al. (2019) assess the validity of this

assumption is by varying the number of geographic clusters and the sizes of the wind

direction bins. I follow a similar approach by changing the number of geographical
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clusters from 20 to 10 and 30 and reducing the size of wind angle bins from 90

degrees to 60 degrees. In Table 6, Column 1 is the original specification, Column 2

and 3 change the number of geographical clusters, and Column 4, 5, and 6 decrease

the size of wind angle bins. In all cases, the IV estimates are similar to the main

specification, supporting the robustness of the main result to different instrument

choices. In addition, I address potential spatial autocorrelation by clustering the

standard errors at the county-day level. As shown in Table A5, the estimates remain

significant.

Table 6. Robustness of IV Estimates to Instrument Choices

(1) (2) (3) (4) (5) (6)
PM2.5 (µg/m3) -0.50∗∗∗ -0.56∗∗∗ -0.48∗∗∗ -0.54∗∗∗ -0.49∗∗∗ -0.46∗∗∗

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
Number of geographic clusters 20 10 30 10 20 30
Size of wind angle bins (degrees) 90 90 90 60 60 60
R2 0.88 0.88 0.88 0.88 0.89 0.88
Observations 4,507,400 4,507,400 4,507,400 4,507,400 4,507,400 4,507,400
F-statistic 123.7 207.6 83.4 151.5 86.1 62.0
Dependent Variable Mean 6.99 6.99 6.99 6.99 6.99 6.99

Notes: This table reports the IV estimates using equation (1) and equation (2) when

varying the instrument choices. The baseline model (shown in column (1)) aggregates

location into 20 clusters and wind direction into 90-degree intervals. The dependent

variable is the log of visit rates at all POIs. All coefficient estimates are multiplied by

100 to demonstrate the effect in percentage points. Standard errors clustered at the

county level are reported in parentheses. Dependent variable mean is the average visit

rate in percentage terms.

Another underlying assumption of this IV approach is that the variation comes

primarily from the pollution that is transported by wind rather than generated locally.

If this underlying assumption holds, then the first stage should be generally weak on

days with low wind speeds and vice versa. To further examine the validity of this IV

approach, I calculate the first-stage F-statistics separately by quintiles of daily wind

speed. As shown in Figure 7, the strength of the first stage increases as wind speed

increases. This implies the pollution variation is mainly due to non-local transport

by wind, which assesses the validity of my approach.
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Figure 7. Relationship Between the First-stage F Statistics and Wind Speed

Notes: This figure displays the First-stage F Statistics for five subsamples that each include days
that fall within a particular wind speed quintile. The first-stage F-statistics are generally smaller
on days with low wind speeds and bigger on days with high wind speeds.

In addition, Table 7 indicates that the main specification is robust to variations in

the number of instrument lags included. This demonstrates that the main estimates

are not driven by lagged effects from PM2.5 on previous days, and therefore, can be

properly interpreted as the impact of a one-unit increase in daily PM2.5 levels.

Table 7. Robustness of IV Estimates to Including Different Instrument Lags

(1) (2) (3) (4) (5) (6)
1 lead and 1 lag 1 lag 2 lags 3 lags 4 lags 5 lags

PM2.5 (µg/m3) -0.50∗∗∗ -0.44∗∗∗ -0.44∗∗∗ -0.43∗∗∗ -0.45∗∗∗ -0.45∗∗∗

(0.02) (0.02) (0.0002) (0.02) (0.02) (0.02)
R2 0.89 0.89 0.89 0.89 0.89 0.89
Observations 4,507,400 4,507,400 4,504,300 4,501,200 4,498,100 4,495,000
Dependent Variable Mean 6.99 6.99 6.99 6.99 6.99 6.99

Notes: This table reports the IV estimates using equation (1) and equation (2) when
including different number of instrument lags. The baseline model (shown in column
(1)) does not include any lags. The dependent variable is the log of visit rates at
all POIs. All coefficient estimates are multiplied by 100 to demonstrate the effect
in percentage points. Standard errors clustered at the county level are reported in
parentheses. Dependent variable mean is the average visit rate in percentage terms.

Then, I check the robustness of the model specification. As a first test, I estimate

the regressions with different sets of fixed effects and weather controls. As shown

in Table 8, the main result is robust to including different combinations of fixed

effects and weather control, which implies the estimate in the main specification is
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not driven by seasonal or regional patterns. Additionally, I estimate the regressions

with the dependent variable in the form of inverse hyperbolic sine of visit levels

rather than the log of visit rates. The estimates in Table 9 are comparable to the

main specification, which implies the main result is insensitive to the form of the

outcome variable.

Table 8. Robustness of IV Estimates to Including Different Forms of Weather Con-
trols and Fixed Effects

(1) (2) (3) (4) (5) (6)
PM2.5 (µg/m3) -0.50∗∗∗ -0.60∗∗∗ -0.53∗∗∗ -0.51∗∗∗ -0.43∗∗∗ -0.63∗∗∗

(0.02) (0.04) (0.08) (0.10) (0.08) (0.03)
Form of weather controls Linear Linear Linear Quadratic Quadratic Quadratic
Day-of-week FE ✓ ✓ ✓ ✓ ✓
County-by-year FE ✓ ✓ ✓
Year-by-month FE ✓ ✓ ✓
County-by-month FE ✓ ✓
State-by-year FE ✓ ✓ ✓
State-by-Month FE ✓ ✓
R2 0.88116 0.84591 0.30827 0.34691 0.31506 0.78988
Observations 4,507,400 4,507,400 4,507,400 4,507,400 4,507,400 4,507,400
F-statistic 123.7 83.2 96.0 64.2 85.6 101.1
Dependent Variable Mean 6.99 6.99 6.99 6.99 6.99 6.99

Notes: This table reports the IV estimates using equation (1) and equation (2) when

including different combinations of fixed effects and weather controls. All coefficient

estimates are multiplied by 100 to demonstrate the effect in percentage points. De-

pendent variable mean is the average visit rate in percentage terms. Standard errors

clustered at the county level are reported in parentheses.
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Table 9. Robustness to Including Different Forms of Outcome

(1) (2)
log(visit rate) × 100 IHS(visits) × 100

PM2.5 (µg/m3) -0.50∗∗∗ -0.51∗∗∗

(0.02) (0.02)
Temperature (°C) 0.25∗∗∗ 0.25∗∗∗

(0.00) (0.00)
Precipitation (mm) -1.95∗∗∗ -1.96∗∗∗

(0.03) (0.03)
Wind speed (m/s) -0.81∗∗∗ -0.82∗∗∗

(0.02) (0.02)
First-stage F stat 123.7 123.7
Dependent Variable Mean 6.99 6.99
Fixed Effects Yes Yes
R2 0.88 0.99
Observations 4,507,400 4,507,400

Notes: This table reports the OLS and IV estimates using equation (1) and equation

(2) when the dependent variable is the inverse hyperbolic sine transformation (IHS)

of visits. In the main specification, the dependent variable is the log of visit rates at

all POIs. Standard errors clustered at the county level are reported in parentheses.

Dependent variable mean is the average visit rate in percentage terms.

For a final robustness check, I estimate the regression using different sub-samples.

The sample period ranges from January 1, 2018, to December 31, 2021, which includes

the COVID-19 pandemic that dramatically affects individuals’ mobility patterns. To

ensure that the results are not influenced by public health guidance on economic

activity, I estimate the effect separately before and after the break out of the COVID-

19 pandemic22. As shown in Table A6, the estimates are very similar, indicating the

negative impact is not driven by pandemic-related restrictions. In addition, A7 shows

the robustness of the main specification when excluding counties without satellite

data.

6 Conclusion

This paper presents a large-scale analysis of the impacts of PM2.5 on daily activities

across the United States. I use an instrumental variable approach to address the

endogeneity of air pollution, and find a significant negative effect of PM2.5 on visit

22The cutoff date for dividing the sample is March 11, 2020, which is when the World Health
Organization (WHO) declared COVID-19 a pandemic.

29



rates. My preferred model implies that a 1 µg/m3 increase in PM2.5 leads to a 0.50 %

decrease in visit rates on average, which is significant across different income groups

and location types. This translates a reduction of 117,642 visits or an annual economic

cost of over 200 million nationwide. Overall, the results in this paper indicate the

presence of behavioral adjustments in response to air pollution fluctuations, which

underscore the importance of characterizing avoidance behavior when analyzing the

impacts of air pollution.

This study is not without limitations. First, while I focus on the effects of air

pollution on daily economic activity, I am unable to examine the potential long-

term adjustments individuals may make. Second, although the phone location-based

visitation data is representative of the population at the county level and above,

aggregating data to the county level introduces information loss and ignores individual

variation. For instance, county-level data does not account for individual-specific

factors such as age, race, education level, or health condition. Third, the reduced-

form approach identifies only the combined effect of air pollution on economic activity,

making it difficult to disentangle the pure avoidance effect. For example, people who

fall ill on a polluted day may spend more time at home because they are physically

unable to engage in activities, rather than actively choosing to avoid pollution.

Despite these limitations, this paper makes several contributions. First, it pro-

vides a large-scale estimation of the causal effect of air pollution on daily activities,

which is more representative than previous studies. Second, this paper has important

policy implications. It provides evidence that people take avoidance behavior and re-

duce economics activity on polluted days, which suggests studies ignoring avoidance

behavior when estimating the cost of air pollution may suffer from bias. In addition,

avoidance behavior itself is costly. When individuals choose to stay home to avoid

pollution, they forgo the daily activities that they could potentially have enjoyed on

a cleaner day. Consequently, the lost activities caused by air pollution should also be

considered as part of the pollution cost.
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A Appendix Tables and Figures

Appendix Table A1. Percentage of Raw Visits by 2-digit NAICS Codes

NAICS Codes Description Raw Visit Percentage
44-45 Retail Trade 9,146,929,016 24.77

72 Accommodation and Food Services 7,610,742,956 20.61
71 Arts, Entertainment, and Recreation 5,034,071,398 13.63
53 Real Estate and Rental and Leasing 4,996,089,773 13.53
61 Educational Services 3,261,648,196 8.83
62 Health Care and Social Assistance 2,543,964,413 6.89
81 Other Services 2,010,628,936 5.44

48-49 Transportation and Warehousing 676,689,537 1.83
31-33 Manufacturing 317,021,279 0.86

52 Finance and Insurance 303,659,378 0.82
92 Public Administration 279409983 0.76
51 Information 160,409,689 0.43
54 Professional, Scientific, and Technical Services 158,697,298 0.43
42 Wholesale Trade 136,210,405 0.37
23 Construction 130,696,514 0.35
55 Management of Companies and Enterprises 72,815,213 0.20
56 Administrative and Support and Waste Management 59,912,819 0.16
22 Utilities 28,890,736 0.08
11 Agriculture, Forestry, Fishing and Hunting 2,093,013 0.01
21 Mining, Quarrying, and Oil and Gas Extraction 185,256 0.00
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Appendix Table A2. Percentage of Raw Visits in Recreation Industry

NAICS Codes Description Raw Visit Percentage
712190 Nature Parks and Other Similar Institutions 2,610,937,377 51.97
713940 Fitness and Recreational Sports Centers 908,175,772 18.08
713910 Golf Courses and Country Clubs 525,323,866 10.46
713990 All Other Amusement and Recreation Industries 187,873,033 3.74
713110 Amusement and Theme Parks 184,452,834 3.67
711211 Sports Teams and Clubs 126,947,155 2.53
712110 Museums 93,538,708 1.86
711310 Promoters of Performing Arts and Events 91,428,501 1.82
713210 Casinos (except Casino Hotels) 87,878,401 1.75
712120 Historical Sites 65,689,209 1.31
713950 Bowling Centers 56,054,357 1.12
713920 Skiing Facilities 26,600,467 0.53
712130 Zoos and Botanical Gardens 24,056,950 0.48
713930 Marinas 17,077,159 0.34
713120 Amusement Arcades 6,400,510 0.13
713290 Other Gambling Industries 4,858,269 0.10
711212 Racetracks 4,849,757 0.10
711219 Other Spectator Sports 915,133 0.02
711130 Musical Groups and Artists 528,696 0.01
711190 Other Performing Arts Companies 364,952 0.01
711510 Independent Artists, Writers, and Performers 70,944 0.00
711110 Theater Companies and Dinner Theaters 33,414 0.00
711410 Agents and Managers for Artists 30,905 0.00

Appendix Table A3. Percentage of Raw Visits in Healthcare Industry

NAICS Codes Description Raw Visit Percentage
6221 General Medical and Surgical Hospitals 602,393,987 24.73
6213 Offices of Other Health Practitioners 391,980,708 16.09
6244 Child Day Care Services 349,496,920 14.35
6211 Offices of Physicians 317,171,391 13.02
6212 Offices of Dentists 226,457,069 9.30
6231 Nursing Care Facilities (Skilled Nursing Facilities) 156,062,572 6.41

621492 Kidney Dialysis Centers 61,429,935 2.52
6223 Specialty (except Psychiatric and Substance Abuse) Hospitals 49,666,480 2.04
6233 Assisted Living Facilities for the Elderly 43,721,328 1.80

624190 Other Individual and Family Services 39,871,875 1.64
6214 Outpatient Care Centers 39,677,848 1.63
6216 Home Health Care Services 37,830,065 1.55
6215 Medical and Diagnostic Laboratories 36,241,509 1.49

624110 Child and Youth Services 21,330,836 0.88
6242 Community Food and Housing, and Emergency 16,862,249 0.69
6219 Other Ambulatory Health Care Services 13,277,127 0.55

621498 All Other Outpatient Care Centers 13,132,241 0.54
621493 Freestanding Ambulatory Surgical and Emergency Centers 8,481,763 0.35
624120 Services for the Elderly and Persons with Disabilities 6,366,018 0.26
6222 Psychiatric and Substance Abuse Hospitals 3,974,312 0.16
6241 Individual and Family Services 161,226 0.01

621420 Outpatient Mental Health and Substance Abuse Centers 139,374 0.01
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Appendix Table A4. AQI Categories corresponding to PM2.5 Concentrations

Category Designated Color AQI Index PM2.5 Concentration (µg/m3)
Good Green 0-50 0.0-12.0
Moderate Yellow 51-100 12.1-35.4
Unhealthy for Sensitive Groups Orange 101-150 35.5-55.4
Unhealthy Red 151-200 55.5-150.4
Very Unhealthy Purple 201-300 150.5-250.4
Hazardous Maroon 301-500 250.5-500

Source: National Ambient Air Quality Standards for Particle Pollution 23.

Appendix Table A5. Robustness to Clustering Level

(1) (2) (3) (4) (5) (6)
PM2.5 (µg/m3) -0.65∗∗∗ -0.78∗∗∗ -0.64∗∗∗ -0.67∗∗∗ -0.54∗∗ -0.54∗∗

(0.22) (0.23) (0.20) (0.22) (0.21) (0.20)
Number of geographic clusters 20 10 30 10 20 30
Size of wind angle bins (degrees) 90 90 90 60 60 60
R2 0.80 0.80 0.80 0.80 0.80 0.80
Observations 4,457,413 4,457,413 4,457,413 4,457,413 4,457,413 4,457,413
F-statistic 102.2 191.9 71.3 136.8 76.9 55.0
Dependent Variable Mean 0.73 0.73 0.73 0.73 0.73 0.73

Notes: This table reports the IV estimates using equation (1) and equation (2) when the standard
errors are clustered at the county-day level. The dependent variable is the log of visit rates at
all POIs. All coefficient estimates are multiplied by 100 to demonstrate the effect in percentage
points. Dependent variable mean is the average visit rate in percentage terms.

Appendix Table A6. Robustness to COVID-19 Pandemic

(1) Before COVID (2) During COVID (3) After COVID
log(visit rates) ×100 log(visit rates) × 100 log(visit rates) × 100

PM2.5 (µg/m3) -0.27∗∗∗ -0.39∗∗∗ -0.46∗∗∗

(0.02) (0.06) (0.03)
First-stage F stat 158.2 34.2 19.1
Dependent Variable Mean 6.51 4.93 8.76
Fixed Effects Yes Yes Yes
R2 0.90 0.93 0.89
Observations 2,467,600 49,600 855,600

Notes: This table presents IV estimates using equation (1) and equation (2) for different

time periods. Standard errors are reported in parentheses and are clustered at the

county level. The dependent variable mean is the average visit rate in percentage terms.

Before COVID denotes observations before March 15, 2020, when many U.S. states

began implementing stay-at-home orders. During COVID denotes observations from

March 15, 2020, to April 2021, when the FDA issued an emergency use authorization

for the COVID-19 vaccine. After COVID denotes observations after April 2021.

23https://www.epa.gov/sites/default/files/2016-04/documents/2012_aqi_factsheet.p

df.Accessed Feb 25, 2023
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Appendix Table A7. Robustness to Excluding Counties without Satellite Data

(1) With IDW (2) Without IDW
log(visit rates) × 100 log(visit rates) × 100

PM2.5 (µg/m3) -0.50∗∗∗ -0.39∗∗∗

(0.02) (0.03)
Temperature (°C) 0.25∗∗∗ 0.22∗∗∗

(0.00) (0.00)
Precipitation (mm) -1.98∗∗∗ -1.98∗∗∗

(0.03) (0.05)
Wind speed (m/s) -0.82∗∗∗ -0.67∗∗∗

(0.02) (0.03)
First-stage F stat 123.7 24.6
Dependent Variable Mean 6.99 6.73
Fixed Effects Yes Yes
R2 0.88 0.88
Observations 4,507,400 1,674,454

Notes: This table reports the effect of daily PM2.5 on daily activities using only coun-

ties with satellite data. In the main specification, counties without satellite data are

interpolated using IDW. Dependent variable mean is the average visit rate in percent-

age terms. Fixed effects include county-by-year, county-by-month, year-by-month and

day-of-week FE. Standard errors are clustered at the county level.
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Appendix Figure A1. County-level visit rates and PM2.5 concentration

(a) County-level Visit Rates (b) County-level PM2.5 Concentration

Notes: This figure displays average daily county means for the number of visitations (left panel)
and PM2.5 concentration (right panel) from January 1, 2018, to December 30, 2021. As a few
counties do not have any visitation data, there are some missing values in the figure.
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Appendix Figure A2. Example: Air Quality Information on iPhone with Weather

(a) when AQI ≤ 100 (b) when AQI > 100

Notes: This figure displays the weather application interface when AQI ≤ 100 (left panel) and
AQI > 100 (right panel). Specifically, if there is no air quality concern (AQI ≤ 100), then
there is no message at the top of the Weather overview. Users have to scroll down to find the
air quality information. However, if the air quality is unhealthy (AQI > 100), then the app
prominently displays information regarding unhealthy air quality at the top of the interface.
Source: https://osxdaily.com/2018/11/20/get-air-quality-info-iphone-weather/
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Appendix Figure A3. K-means Clustering Result

Notes: This figure displays the K-means clustering result based on latitude and longitude. As a
few counties do not have any visitation data for leisure facilities from Safegraph, there are some
missing values in the figure. There are 20 spatial groups in total, and each of them is represented
by a different color. After clustering, γg

b in equation (2) can vary across geographic regions.
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Appendix Figure A4. No Manipulation at the Threshold

Notes: This figure displays the density of the PM2.5 concentrations and indicates there is no
discontinuity in density at the threshold. The red line is at 35.5 µg/m3, which is the level EPA set
to protect public health.
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