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Abstract

Individuals take action to avoid costly air pollution exposure, yet empirical
evidence is limited. I investigate how people modify their daily activities to
mitigate the adverse health e↵ects of air pollution. Using phone-location based
data from Safegraph, I conduct a large-scale analysis to examine the causal
e↵ect of air pollution on visitation rates to leisure facilities across the United
States. By using changes in local wind direction as an instrumental variable
(IV) for air pollution, I find that a 1 µg/m3 increase in PM2.5 concentration
leads to a 0.65% decrease in visitation rates (or a loss of 6595 visits) per day
nationwide. This reduction is more pronounced in counties with higher incomes
and larger elderly populations, suggesting better awareness of the elevated air
pollution among wealthier or more vulnerable groups.
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1 Introduction

Air pollution is considered as the world’s biggest environmental health threat1. Ex-

isting evidence shows that exposure to air pollution can induce premature mortality

(Currie and Neidell, 2005; He et al., 2016; Deryugina et al., 2019), reduce labor pro-

ductivity (Gra↵ Zivin and Neidell, 2012; Borgschulte et al., 2018; He et al., 2019) and

hours worked (Hanna and Oliva, 2015; Aragón et al., 2017). While the negative ef-

fects of air pollution have been discussed a lot, previous literature has predominantly

focused on health and labor outcomes. However, individual take various avoidance

strategies in order to mitigate the negative health impact of air pollution. On the one

hand, they increase spending on defensive expenditures such as face masks (Zhang

and Mu, 2018) and air purifiers (Ito and Zhang, 2020). On the other hand, they

reduce or cancel their activities to reduce exposure to pollutants. If individuals take

action to reduce their exposure to air pollution, the estimated e↵ects of air pollution

that ignore these actions are severely biased (Neidell, 2009).

I investigate the relationship between air pollution and leisure activities by analyz-

ing visitation rates to various leisure facilities in the United States. Using anonymized

mobile phone location data from the company SafeGraph, I extract patterns of daily

visits to these facilities. A primary identification concern when estimating the e↵ect of

air pollution is that air pollution is endogenous. For example, existing estimates may

be biased due to reverse causality, as visitation-related tra�c could increase local air

pollution. To resolve the concern, I use change in wind direction as an instrumental

variable (IV) for air pollution to derive the causal e↵ect of air pollution on visit rates.

I find that, on average, a 1 µg/m3 (about 10 percent of the mean) increase in PM2.5

concentration leads to a 0.65% decrease in visit rates, and this negative impact is sig-

nificant across di↵erent types of locations (i.e., zoos, nature parks, amusement parks,

golf courses, marinas, museums, casinos, restaurants and supermarkets) and di↵erent

demographic groups. This translates to a visitation loss of 6595 visits per day, or

an annual welfare loss of over $ 200 million nationwide2. The reduction in visita-

tion rates is more pronounced in counties with higher incomes and larger proportions

of elderly residents, potentially indicating that wealthier or more vulnerable groups

have a better awareness of elevated air pollution levels. In addition, I also show that

1https://unece.org/air-pollution-and-health. Accessed Jan 2, 2022.
2Give that the recreational use value per person per day is $93.89, as referenced from the Recre-

ational Use Values Database, the annual welfare loss is calculated as 6595 visits × $93.89 × 365
days.
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air quality advisories, commonly displayed on weather applications or websites when

PM2.5 exceeds a certain level, serve as a potential channel through which pollution

reduces leisure visit rates.

This paper provides the first large-scale estimation of the causal e↵ect of air pollu-

tion on daily activities in the United States. Existing literature studying the e↵ect of

air pollution on daily activities is generally based on a limited sample from a specific

region (Bresnahan et al., 1997; Zivin and Neidell, 2009) or a specific activity type,

such as visits to national parks (Keiser et al., 2018), camping (Gellman et al., 2022) or

movie watching (He et al., 2022), which makes the generalizability of these estimates

worth questioning. For example, visitors to tourist attractions might not respond to

air pollution in the same manner as those exercising in urban parks. In contrast, my

analysis uses nationwide phone-location based data and focuses on visits to a broader

range of facilities, making it more representative than previous studies. Consequently,

my findings suggest a slightly smaller e↵ect than what has been previously reported.

Moreover, this paper adds to the relatively understudied literature on avoidance

behavior from a di↵erent perspective by investigating whether individuals respond to

daily pollution fluctuations. A few recent studies show that providing information on

air pollution, such as air quality alerts, prompts avoidance behavior. Neidell (2009)

uses aregression discontinuity design to estimate the causal e↵ect of smog alerts on

visitation to the Los Angeles Zoo and Gri�th Park Observatory. Altindag et al.

(2017) investigate the impact of avoidance behavior triggered by pollution alerts on

various birth outcomes, providing evidence for the e↵ectiveness of pollution alerts in

promoting public health. However, air quality warnings are rare and are triggered

when Air Quality Index exceeds a certain level, but the negative e↵ects of air pollu-

tion continue to increase before and above this threshold (Zivin and Neidell, 2009).

Therefore, how individuals respond to these alerts does not necessarily correspond to

how individuals respond to air quality itself. Without an air quality alert, individuals

might not be aware of the elevated pollution levels. Thus, it remains an open ques-

tion as to whether people adjust their behavior in response to day-to-day pollution

fluctuations. Furthermore, with the development of information technologies making

real-time air pollution information readily available nowadays (Yoo, 2021), studying

how people respond to this information is becoming increasingly important.

Finally, this paper reinforces the importance of characterizing avoidance behav-

ior when quantifying the externalities of air pollution. The results in this paper are

consistent with the hypothesis that people reduce leisure activities on polluted days,
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which implies existing literature that assumes no avoidance behavior may underesti-

mate the costs of air pollution. Properly accounting for these avoidance behaviors is

essential for accurately measuring the externalities of air pollution. In addition, from

a policy perspective, researchers often view avoidance behavior as the primary pol-

icy target and are intensively investigating ways to promote voluntary self-protection

(Lee et al., 2020). However, avoidance behavior itself can be costly, either in terms

of increased expenditures or utility losses. In my case, a lack of leisure activities may

induce depression, which impose additional costs on society. Accurately quantifying

these e↵ects is important for understanding the costs of air pollution and determining

optimal policies.

The rest of the paper is organized as follows. Section 2 describes the data and

provides summary statistics. Section 3 introduces the empirical strategy in detail.

Section 4 presents the main results, discusses the heterogeneity, estimates the e↵ect

of pollution alerts, and provides back-of-the-envelope calculation. Section 5 presents

the robustness checks. Section 6 concludes.

2 Data

The data used in the paper come from three main sources: mobile phone-based visi-

tation data from SafeGraph, satellite-based air pollution from CAMS global reanal-

ysis (EAC4), and satellite-based weather data from EAC4 and ECMWF Reanalysis

(ERA5). The linkages and further details are described below.

2.1 Visitation Data

I obtain the visitation data from SafeGraph3, a data company that aggregates anonymized

location data from numerous applications in order to provide insights about physi-

cal places, via the SafeGraph Community. The dataset includes information collected

from over 45 million smart mobile devices and provides over 3.6 million Points of Inter-

est (POI) covering the entire United States. To enhance privacy, SafeGraph excludes

census block group information if fewer than two devices visited an establishment in

a month from a given census block group.

In this paper, I focus on leisure facilities and extract these locations from the

POI data using their North American Industry Classification System (NAICS) code.

3https://www.safegraph.com/. Accessed Sep 12, 2023.
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Specifically, I focus on POIs corresponding to these ten categories: Zoos and Botani-

cal Gardens (712130), Nature Parks and Other Similar Institutions (712190), Amuse-

ment and Theme Parks (713110), Golf Course and Country Clubs (713910), Mari-

nas (713930), Museums (712110), Casinos (713210), Bowling Centers (713950), Full-

Service Restaurants (722511), and Supermarkets and Other Grocery Retailers (445110).

In total, I obtain over 600 million observations for these ten categories from January

1, 2018, to December 30, 2021, across the United States.

The POI location data from SafeGraph were collected from over 45 million mobile

devices, accounting for over 10% of the US population. SafeGraph conducted a data

quality evaluation by comparing its demographic data with the American Community

Survey (ACS) data from the US Census and found that their data are statistically

representative of the population at the county level and above (Squire, 2019; Chang

et al., 2022). Therefore, I match each location to its county based on latitude and

longitude, and then aggregate visits at the county level. After aggregating all vis-

its (including all visits to zoos and botanical gardens, nature parks, amusement and

theme parks, golf courses, marinas, museums, casinos, bowling centers, restaurants

and supermarkets) at the county level, I have 4,463,557 county-day observations. Ad-

ditionally, I aggregate the visits to di↵erent categories at the county level separately,

and the number of county-day observations for each category can be found in Table

14.

Because this dataset does not contain socioeconomic and demographic informa-

tion about mobile device users for privacy protection reasons, I obtain county-level

population and income data from the United States Census Bureau. Since the popu-

lation in each county varies a lot and more populated counties tend to have a larger

number of visits, I use the visitation rates rather than the visitation numbers as the

dependent variable in this paper. To obtain the county-level visitation rates, I first

aggregate the total number of visits in each county and then divide the total number

of visits by the total population of this county.

2.2 Air Pollution Data

Although the United States Environmental Protection Agency (EPA) has been re-

porting air quality and other atmospheric data since 1970 and the number of pollutant

monitors has increased over the years, there are still limitations: more than half of

4Note that the number of observations varies across categories because some counties may not
have facilities of certain types.
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the monitors collect data on a 1-in-3 day schedule or 1-in-6-day schedule5, resulting in

a lack of data on certain days. Interpolating the missing data on these days can lead

to bias, as air quality on unmonitored days is found to be worse than on monitored

days due to strategic responses (Zou, 2021).

Therefore, rather than using monitor-based data, I use satellite-based air pol-

lution data from the EAC4 reanalysis database6. EAC4 reports PM2.5 and other

atmospheric data every 3 hours with a 0.75 ⇥ 0.75 (⇡ 81km ⇥ 81km) resolution,

which is derived from the combination of satellite observation and computer simula-

tion of the atmosphere. I construct the county-level daily PM2.5 level in the following

manner: for counties that have multiple satellite data, I average the gridded values

overlapping each county; for counties that do not have satellite data, I interpolate

their PM2.5 levels using inverse distance weighting (IDW) base on their latitude and

longitude. Then, I match the visitation data with the air pollution data using county

code and date. Figure A1 shows the average county-level visit rates and PM2.5 levels

from January 1, 2018, to December 30, 2021. As a few counties do not have any

visitation data for leisure facilities from Safegraph, there are some missing values in

the figure.

2.3 Weather Data

The analysis in this paper contains a flexible set of control variables for weather,

including temperature, wind speed, and precipitation. Additionally, wind direction

is used as the instrument of PM2.5 concentrations.

Daily temperature, wind direction, and wind speed data are also obtained from

the EAC4 reanalysis database. I average the daily measures across all gird points in

a particular county to obtain the county-level daily measure. For counties without

satellite data, I interpolate their temperature, wind direction, and wind speed using

IDW based on their latitude and longitude. Specifically, wind direction and wind

speed are constructed using the East-West wind vector (u-wind) and the North-

South wind vector (v-wind) provided in the database7. Wind direction is defined as

the direction the wind is blowing from.

5See EPA’s Sampling Schedule Calendar: https://www.epa.gov/amtic/sampling-schedule-c
alendar.Accessed October 10, 2022

6See https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-reanalysi
s-eac4?tab=overview. Accessed September 19, 2022.

7Note that wind directions and speed are vectors, so they cannot be averaged or interpolated
numerically. Therefore, when averaging or interpolating, I first take the average of the two vectors
and then calculate the average wind direction and wind speed using the average vectors.
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In addition, I obtain precipitation data from the Copernicus ERA5 reanalysis

hourly databases. Precipitation data are reported on a 0.25 ⇥ 0.25 degrees grid (

⇡ 27km⇥ 27km). I constructed the county-level daily precipitation by averaging the

hourly data on a given day with grid points within a particular county. For counties

without satellite data, I interpolate their precipitation using IDW based on their

latitude and longitude.

2.4 Summary Statistics

Table 1 displays the summary statistics for the main estimation sample, which consists

of 4,463,557 county-day observations. The average daily visit rate8 to all leisure

facilities within a county is 7.28 per 1000 people9. The average daily concentration

of PM2.5 is 11.50 µg/m310, with a standard deviation of 16.13.

8The summary statistics of the number of visits are reported in Table A1
9Note that the data from Safegraph were collected from over 45 million mobile devices, which is

around 14% of the US population.
10This is slightly higher than the average PM2.5 concentration calculated using EPA Ground

monitors. One possible explanation for this discrepancy is strategic monitor placement, as discussed
in Graginer et al. (2018).
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Table 1. Summary Statistics

Variables Mean SD N
Visit Rates (per 1,000 people)

All Facilities 7.28 4.97 4,463,557
Outdoor Facilities

Zoos and Botanical Gardens 0.09 0.23 927,381
Nature Parks 1.27 1.27 3,552,409
Amusement Parks 0.19 0.47 1,952,944
Golf Courses 0.48 0.70 2,984,282
Marinas 0.13 0.35 1,145,578

Other Facilities
Museums 0.30 0.72 2,723,077
Casinos 0.77 1.90 398,944
Bowling Centers 0.28 0.49 1,857,387
Restaurants 4.48 3.56 4,415,096
Supermarkets 1.31 1.38 4,139,044

Pollution
PM2.5 (µg/m3) 11.50 16.13 4,463,557

Weather
Temperature (°C) 13.64 10.69 4,463,557
Total Precipitation (mm) 0.31 0.69 4,463,557
Wind Direction (degrees) 193.46 94.60 4,463,557
Wind Speed (m/s) 2.71 1.54 4,463,557

Demographic
Population 106,194 38,243 4,463,557
Median Income 49,509 12,902 4,463,557

3 Empirical Strategy

To investigate the impacts of air pollution on leisure activities, I fit a fixed-e↵ect

Ordinary Least Squares (OLS) using the equation:

log(
Yct + 1

Popc
) = ↵⇥ PM2.5ct +X

0

ct� + �cy + ⌘cm + ✓my + ✏ct (1)

where c indexes county, t indexes time which is at the daily level, y indexes year, and

m indexes month. The outcome variable is the visit rate, which is calculated using the

visits to all leisure facilities in county c on date t (Yct) divided by the county population

in the year 2020 (Popc). Since the outcome variable is highly right-skewed, I perform

a log transformation (Yct is added by 1 to avoid numerical errors when taking the log
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transformation). The coe�cient of interest is PM2.5ct, which is the average PM2.5

level in county c on date t. Control variable Xit includes other weather variables,

such as temperature, precipitation, and wind speed. To minimize concerns about

autocorrelation, I include one lead and one lag of the weather controls, as well as

PM2.5 (OLS) or the instruments (IV). My results are robust to di↵erent forms of

weather controls.

In addition, I include a rich set of fixed e↵ects, including county-by-year fixed e↵ect

�cy, county-by-month fixed e↵ect ⌘cm, and month-by-year fixed e↵ect ✓my. Specifi-

cally, county-by-year fixed e↵ects �cy pick up within-year variations in county-level

factors that determine visits but are not captured by the control variables, such as

demographic characteristics and economic conditions. County-by-month fixed e↵ects

⌘cm control for seasonal unobservables across counties, such as di↵erent peak seasons

due to di↵erent geographic features. Lastly, month-by-year fixed e↵ect ✓my captures

the time-varying shocks that are common in each month, such as economic recessions

and pandemic outbreaks. I also examine the robustness of the results by including

di↵erent fixed e↵ects. The standard errors are clustered at the county level.

The coe�cient ↵ captures the impact of air pollution on leisure activities. The

identification assumption is that, conditional on control variables and fixed e↵ects

included in equation (1), unobserved determinants of visit rates (✏ct) are independent

of variation in PM2.5. However, such an assumption can be violated since local air

pollution is endogenous to local activities. For instance, as more people drive to the

parks, emissions around the park will increase, thereby biasing the estimate of ↵.

To address this concern, I leverage the pollution variation due to changes in wind

patterns to identify pollution impacts. Specifically, since wind directions are random,

I use the changes in wind direction as an instrumental variable for air pollution

to derive the causal relationship (Deryugina et al., 2019). The assumption of this

approach is that after controlling for covariates and fixed e↵ects, changes in wind

direction only a↵ect people’s leisure activities through their e↵ects on air pollution.

The specification for the first stage is:

PM2.5ct =
X

g2G

3X

b=0

�g
b1[Gc = g]⇥WindDir90bct +Xct� + �cy + ⌘cm + ✏ct (2)

In equation (2), the instrument variable is constructed in the following manner.

WindDir90bct equals 1 if wind direction in county c falls in the 90-degree interval [90b,

90b+90) and 0 otherwise. To allow the e↵ect of the wind instruments on PM2.5, de-
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noted as �g
b , to vary across geographic regions, I use the K-means clustering algorithm

to classify counties into 20 spatial groups based on their latitude and longitude. The

clustering result is shown in Figure A3. 1[Gc = g] equals 1 if county c is classified

into monitor group g and 0 otherwise. Other control variables Xct and fixed e↵ects

are defined as in equation (1).

Equation (2) restricts the e↵ect of wind direction on pollution to be the same for all

counties within each geographic cluster. Intuitively, non-local sources located outside

of the cluster are more likely to have similar e↵ects on pollution levels in all (or most)

counties in the cluster group. As a result, Equation (2) is more likely to capture

the pollution variation driven by non-local sources. This is advantageous because

pollution driven by local sources may not a↵ect all individuals residing within the area

in the same way, leading to measurement error11. In section 5, I provide evidence that

the pollution variation I employed is primarily driven by non-local sources. Therefore,

the e↵ect of wind direction on pollution should be similar for all counties in the same

geographic group. I employ 4 bins and 20 clusters for computational ease. The results

are robust to varying the number of wind direction bins and geographic clusters (Table

7).

4 Results

4.1 Main E↵ect

I find a significant negative relationship between air pollution and visit rates to leisure

facilities. Table 2 displays the results from both fixed-e↵ects models and instrumental

variable models. For the IV strategy, I use daily changes in county-level wind direction

as an instrument for daily changes in county-level PM2.5 concentrations. The first-

stage F-statistic in Column 2 is 102.2, which implies the issue of the weak instrument

is not a problem in this approach. Since PM2.5 is endogenous, I rely on the IV

approach as the preferred empirical strategy. The estimate in Column 2 implies that

a 1 µg/m3 increase in PM2.5 leads to a 0.65% decrease in visit rates on average. In

addition, 2 shows that warmer temperatures increase visit rates, whereas precipitation

and strong wind reduce visit rates.

11Consider a local pollution source located in the center of a cluster. When the wind blows from
the west, counties to the west of this source will record low pollution levels, and counties to the east
will record high pollution levels. On net, a researcher who uses such variation may conclude that
short-term pollution fluctuations have no e↵ect on visit rates to leisure facilities.
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The IV estimate in Column 2 is substantially larger than the OLS estimate in Col-

umn 1, suggesting that OLS estimation su↵ers from significant bias. This downward

bias is common in quasi-experimental studies on air pollution and is generally thought

to be, at least in part, due to measurement errors in pollution exposure (Deryugina

et al., 2019; Alexander and Schwandt, 2022).

Table 2. E↵ect of PM2.5 on Outdoor Recreation Visit Rates

(1) OLS (2) IV
log(visit rates) ⇥100 log(visit rates) ⇥ 100

PM2.5 (µg/m3) -0.02⇤⇤⇤ -0.65⇤⇤⇤

(0.00) (0.03)
Temperature (°C) 0.08⇤⇤⇤ 0.22⇤⇤⇤

(0.01) (0.01)
Precipitation (mm) -2.30⇤⇤⇤ -1.74⇤⇤⇤

(0.04) (0.14)
Wind speed (m/s) -0.55⇤⇤⇤ -0.94⇤⇤⇤

(0.01) (0.02)
First-stage F stat 102.2
Dependent Variable Mean 0.73 0.73
Fixed E↵ects Yes Yes
R2 0.82 0.80
Observations 4,457,413 4,457,413

Notes: This table reports the OLS and IV estimates using equation (1) and (2). The
dependent variable is the log of visit rates at all outdoor recreational facilities. All
coe�cient estimates are multiplied by 100 to demonstrate the e↵ect in percentage
points. All regressions control for temperature, precipitation, and wind speed; one
lead and one lag of these weather controls. OLS (IV) estimates also include one lag
and one lead of PM2.5 (instruments). Dependent variable mean is the average visit
rate in percentage terms. Fixed e↵ects include county-by-year, county-by-month and
year-by-month FE. Standard errors are clustered at the county level.

I further investigate if the decrease in visit rates is o↵set by an increase in visit

rates on subsequent days. This assessment considers the possibility of more dynamic

behavioral responses to air pollution, such as people adjusting the timing of leisure

activities rather than reducing them altogether. To evaluate this temporal impact,

I include lagged PM2.5 values in the main specification and estimate the e↵ects on

successive days. I find that the e↵ect of the lagged PM2.5 is not significant (Table 3),

suggesting that individuals do not reschedule their activities. Thus, the reduced visit

rates in the main result are not compensated by increased visit rates on the following

day.
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The observed negative relationship between air pollution and visit rates indicates

that individuals actively adjust their behavior in response to daily fluctuations in

air pollution. Specifically, when air quality deteriorates, people tend to reduce their

visits to leisure facilities. This avoidance behavior decreases their exposure to air

pollution, thereby mitigating its negative impacts. As a result, previous studies that

did not consider this avoidance behavior may have underestimated the costs of air

pollution. Given that the average visit rate to leisure facilities is 0.73% in my sample,

this translates into a 0.005% decrease in visit rates per day per county, or a 659512

decrease in the number of visits per day across the United States due to a 1 µg/m3

increase in PM2.5.

Table 3. E↵ect of lagged PM2.5

(1) (2)
log(visit rate) ⇥100 log(visit rate) ⇥ 100

PM2.5, contemporaneous(µg/m3) -0.65⇤⇤⇤ -0.63⇤⇤⇤

(0.03) (0.03)
PM2.5, 1 day lag (µg/m3) -0.09

(0.06)
PM2.5, 2 day lag (µg/m3) 0.03

(0.09)
First-stage F stat 102.2 100.6
Dependent Variable Mean 0.73 0.73
Fixed E↵ects Yes Yes
R2 0.80 0.80
Observations 4,457,413 4,454,341

Notes: This table reports the IV estimates using equation (1) and equation (2) when
including lagged PM2.5. The dependent variable is the log of visit rates at all outdoor
recreational facilities. All coe�cient estimates are multiplied by 100 to demonstrate
the e↵ect in percentage points. Fixed e↵ects include county-by-year, county-by-month
and year-by-month FE. Dependent variable mean is the average visit rate in percentage
terms. Standard errors clustered at the county level are reported in parentheses.

4.2 Heterogeneity

Heterogeneous across Groups of Individuals

A growing literature shows that exposure to air pollution and other environmental

risks is unequally distributed across di↵erent groups of individuals (Mohai et al., 2009;

Hsiang et al., 2019). To examine whether the e↵ects of air pollution di↵er across in-

12The World Bank reported a total population of 331.9 million in the United States in 2021.
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come groups, I categorize counties into two income groups: low income (below the

national median) and high income (above the national median), and include their

interaction with PM2.5 levels13. As shown in Column (1) of Table 4, the estimated

coe�cient for the interaction is negative and statistically significant at the 99% level.

This indicates that high-income counties have greater sensitivity to air pollution in

their leisure activities14. Furthermore, if I focus on counties with income higher than

the 3rd quartile, the magnitude of the estimate becomes larger. This result sug-

gests that as income increases, the avoidance response to air pollution also increases.

One possible interpretation is that individuals in high-income counties have a better

awareness of air pollution.

Table 4. Heterogeneous E↵ect of PM2.5 across Di↵erent Income Groups

(1) (2)
log(visit rates) ⇥100 log(visit rates) ⇥ 100

PM2.5 (µg/m3) -0.53⇤⇤⇤ -0.50⇤⇤⇤

(0.04) (0.04)
PM2.5 ⇥1{income > median} -0.20⇤⇤⇤

(0.06)
PM2.5 ⇥1{income > 3rd quartile} -0.45⇤⇤⇤

(0.08)
First-stage F stat 102.1 102.1
Dependent Variable Mean 0.73 0.73
Fixed E↵ects Yes Yes
R2 0.80 0.80
Observations 4,455,959 4,455,959
Notes: This table reports the e↵ect of daily PM2.5 on outdoor reaction visit rates for
di↵erent income groups using equation (1) and equation (2). The dependent variable is
the log of the visit rates in county c at date t. All coe�cient estimates are multiplied by
100 to demonstrate the e↵ect in percentage points. The dummy variable 1{income >
median} = 1 (1{income > 3rd quartile} = 1) if personal income in county c is higher
than the median (third quartile). Dependent variable mean is the average visit rate in
percentage terms. Fixed e↵ects include county-by-year, county-by-month, and month-
by-year FE. Standard errors are clustered at the county level.

Furthermore, I investigate the potential influence of a county’s age composition

on pollution avoidance behavior by using the proportion of residents over 65 years.

13Since PM2.5 is endogenous, the interaction of PM2.5 and income group dummy is instrumented
using wind directions.

14It is important to note that higher-income counties register a higher average visit rate initially:
0.79% versus 0.67% in lower-income counties. The decrease is proportional to the mean visit rates.
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Similar to the income categorization, counties are grouped based on their elderly pop-

ulation percentage: fewer elderly (below median) and more elderly (above median).

Their interaction with PM2.5 levels is included in the regression. In Column (1) and

(2) of Table 5, the estimated coe�cient for the interaction term is negative and statis-

tically significant. As elderly are more vulnerable to air pollution exposure (Schlenker

and Walker, 2016; Deschenes et al., 2017), this suggests the vulnerable group would

respond more to air pollution.

Table 5. Heterogeneous E↵ect of PM2.5 across Di↵erent Age Groups

(1) (2)
log(visit rates) ⇥100 log(visit rates) ⇥ 100

PM2.5 (µg/m3) -0.62⇤⇤⇤ -0.63⇤⇤⇤

(0.03) (0.03)
PM2.5 ⇥1{age > median} -0.32⇤⇤⇤

(0.10)
PM2.5 ⇥1{age > 3rd quartile} -0.35⇤⇤

(0.17)
First-stage F stat 102.1 102.1
Dependent Variable Mean 0.73 0.73
Fixed E↵ects Yes Yes
R2 0.80 0.80
Observations 4,455,959 4,455,959
Notes: This table reports the e↵ect of daily PM2.5 on leisure facilities visit rates for
di↵erent age groups using equation (1) and equation (2). The dependent variable is the
log of the visit rates in county c at date t. All coe�cient estimates are multiplied by 100
to demonstrate the e↵ect in percentage points. The dummy variable 1{age > median}
= 1 (1{age > 3rd quartile} = 1) if proportion of people over 65 years old in county c
is exceeds the median (third quartile). Dependent variable mean is the average visit
rate in percentage terms. Fixed e↵ects include county-by-year, county-by-month, and
month-by-year FE. Standard errors are clustered at the county level.

Heterogeneous E↵ect across Types of Locations

The e↵ect estimated in the main results might mask variations across di↵erent types

of location. To provide a comprehensive view, I utilize the broad coverage of the

SafeGraph dataset to examine the e↵ect of air pollution on various types of locations.

These include outdoor facilities such as nature parks, zoos, marinas, golf courses,

and amusement parks, as well as indoor establishments like museums, bowling cen-

ters, casinos, restaurants, and supermarkets. Using the same IV model as the main

analysis, I separately estimate the e↵ects for each location type.
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As shown in Figure 1, visit rates to all outdoor facilities are negatively a↵ected

by air pollution. Among them, golf courses have the largest decline in visits. This

might stem from golf’s popularity among the urban rich, further suggesting that

higher-income groups could be more responsive to air pollution.

Furthermore, Figure 2 indicates that visit rates to most indoor facilities are also

negatively a↵ected by air pollution. This finding is consistent with He et al. (2022),

and they suggest that the negative e↵ect is mainly due to pollution exposure during

transportation to the destination. Moreover, the magnitude of this negative impact

is generally smaller compared to outdoor facilities, likely because engaging in out-

door activities intensifies the negative health e↵ects of air pollution due to increased

respiration and exposure.

Figure 1. Heterogeneity by Outdoor Location Types

Notes: This figure displays the heterogeneous treatment e↵ect of air pollution on visit rates at
outdoor facilities, including nature parks, zoos, marinas, golf courses, and amusement parks.
Points represent the estimates, and vertical lines represent the 95% confidence intervals. The blue
dashed line represents the estimate for all facilities as presented in the main result.
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Figure 2. Heterogeneity by Indoor Location Types

Notes: This figure displays the heterogeneous treatment e↵ect of air pollution on visit rates at
indoor facilities, including museums, bowling centers, casinos, restaurants, and supermarkets.
Points represent the estimates, and vertical lines represent the 95% confidence intervals. The blue
dashed line represents the estimate for all facilities as presented in the main result.

4.3 Air Quality Advisories

In this section, I show that Air Quality Index (AQI) Advisory is a possible channel

through which pollution reduces leisure visit rates. AQI is an index that spans from

0 to 500, created by the EPA for telling the public how polluted the air is. Real-

time AQI information is disseminated to the public through various channels, such

as website portals (www.airnow.gov) and mobile applications. An AQI value of 100

generally corresponds to the national air quality standard for the pollutant, which is

the level EPA has set to protect public health15. Table A2 displays the behavioral

guidelines and PM2.5 concentrations associated with each category.

When PM2.5 concentrations exceed 35.5 µg/m3, air quality is considered un-

healthy (code orange), and information about unhealthy air quality appears on most

weather applications or websites (see Figure A2 for an example). In my sample, 85%

of the days are good (code green) and 14% of the days are moderate (code yellow).

Individuals actively searching for air quality information will typically find a green

category, making an orange day a noticeable change. Therefore, I create a dummy

variable indicating whether the real-time PM2.5 is above the orange category (35.5

µg/m3) to estimate the e↵ects of air quality advisories. Additionally, since AQI ad-

visories are based on data from EPA’s outdoor monitors, I switch to monitor-based

15source: https://www.epa.gov/outdoor-air-quality-data/air-data-basic-information.
Accessed March 30, 2023
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PM2.5 data for the following estimation16.

A number of studies have shown that providing information on air pollution, such

as smog alerts, prompts avoidance behavior (Neidell, 2009; Zivin and Neidell, 2009).

However, my study is di↵erent from theirs in two aspects. First, they are focusing on

smog alerts, which are based on ozone and are more severe events17. In contrast, given

that di↵erent states have varying criteria for issuing air quality alerts or warnings,

I focus on air quality advisories based on the unified AQI category. Second, they

study forecast alerts, whereas I focus on real-time information. A study more closely

related to mine is Yoo (2021), which investigates the impact of real-time air quality

advisories on attendance at baseball games in South Korea.

Since air quality advisories are displayed on mobile applications and websites

when PM2.5 levels exceed 35.5 µg/m3, I use a regression discontinuity (RD) Design

to estimate the causal e↵ect of real-time advisories. One main assumption is that

there is no manipulation at the cuto↵, which is reasonable since PM2.5 values are

automatically recorded by monitors. Figure A4 further supports the validity of this

assumption. Following Neidell (2009), I estimate the following equation:

log(
Yct + 1

Popc
) =↵1 · Advisoryct + g(PM2.5ct,↵2) +X

0

ct�3 + �cy + ⌘cm + ✓my + ✏ct,

(3)

where Advisoryc,t is a dummy variable indicating whether PM2.5 is above the orange

category in county c at date t. If ↵1 < 0, this implies individuals respond to air qual-

ity advisories and reduce their leisure activities accordingly. PM2.5 is included as a

linear function, quadratic function, or as 10 µg/3 interval dummies. Other control

variables Xct and fixed e↵ects are defined as in equation (1).

16Since some counties do not have monitors, there are 951,465 observations from January 1, 2018
to December 30, 2021.

17California state law mandates an air quality episode be declared when ozone is forecasted to
surpass 0.2 ppm, equivalent to an AQI of 300.
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Table 6. E↵ect of real-time Air Quality Advisories on Visit Rates

(1) (2) (3) (4)
Advisory -0.68⇤⇤⇤ -0.53⇤⇤ -0.51⇤⇤ -0.67⇤⇤

(0.26) (0.25) (0.23) (0.32)
PM2.5 (µg/m3) -0.01⇤⇤⇤ -0.02⇤⇤⇤ -0.02⇤⇤⇤

(0.00) (0.01) (0.01)
Fixed E↵ects Yes Yes Yes Yes
Dependent Variable Mean 0.73 0.73 0.73 0.73
Function Form of PM2.5 Linear Linear, Di↵erent Slope Quadratic Interval Dummies
R2 0.81 0.81 0.81 0.81
Observations 1,660,881 1,660,881 1,660,881 1,660,881

Notes: This table presents RD estimates using equation (3). Advisoryct indicates that
PM2.5 concentration is above the orange category in county c at time t. The depen-
dent variable is the log of visit rates to outdoor recreational facilities. All coe�cient
estimates are multiplied by 100 to demonstrate the e↵ect in percentage points. Fixed
e↵ects include county-by-year, county-by-month, and month-by-year FE. Dependent
variable mean is the average visit rate in percentage terms. Standard errors clustered
at the county level are reported in parentheses.

As shown in Table 6, real-time air pollution advisories e↵ectively reduce visit rates

to leisure facilities. This result is significant across various functional forms of PM2.5

and is consistent with findings in the literature. Additionally, the coe�cient of PM2.5

is also significant, suggesting people react to both the continuous PM2.5 level and

the simpler information provided in the advisories.

I conduct additional robustness checks for this model, shown in Table A6. I

first show the robustness of the results to di↵erent model specifications. Column

(1) estimates the regression with the outcome variable expressed in the IHS of visits

rather than the log of visit rates. Column (2) displays the results when only county-

by-month fixed e↵ects are included. Furthermore, I provide a falsification test by

testing for a discontinuity where one should not exist. The results in Column (3) and

(4) show that the e↵ects of the artificial discontinuities are not significant, providing

further support for the validity of the model.

4.4 Welfare Analysis

In this section, I put the results into context by generating some back-of-the-envelope

estimates of the cost of the lost leisure. In the previous section, I show that a 1 µg/m3

increase in PM2.5 decreases visit rates to leisure facilities by 0.65% on average. In

this study, the average visit rate is 0.73%. This translates into a 0.005% decrease in

visit rates per day per county, or a decline of 6595 visits18 per day across the United

18The World Bank reported a total population of 331.9 million in the United States in 2021.
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States due to a 1 µg/m3 increase in PM2.5.

To understand the economic implications, I source my valuation data from the

Recreational Use Values Database (Rosenberger, 2016). The values estimated in this

dataset represent measures of net willingness-to-pay or consumer surplus derived from

various recreation activities (e.g., sightseeing, hiking)19. Based on Recreational Use

Values Database, the recreational use value per person per day is $77 (in 2016 USD),

which equates to $93.89 in 2022 USD. Therefore, the estimated annual cost in the

United States of a 1 µg/m3 increase in PM2.5 on leisure visitation is approximately

226 million20 in 2022 USD.

The estimated welfare impact of air pollution on outdoor recreational activities

is relatively minor compared to other air pollution cost estimates. For example, the

World Bank estimated that the welfare cost of air pollution in the United States

was around $886.5 billion in 2016. However, these two estimates are not directly

comparable. The World Bank’s estimate assesses the aggregated cost of air pollution

on human health and the environment, while the decrease in outdoor recreational

activities represents only a tiny fraction of this overall cost. A more meaningful

comparison would be a recent paper (Fan et al., 2020), which estimates that the cost

of heavy pollution day on park visitation in China is $20.8 million in 2020 USD per

day in northern China, which is $22.6 in 2022 USD. There are two reasons why my

estimates are smaller. First, Fan et al. (2020) find only citizens in northern cities in

winter respond to air pollution and estimate the welfare loss base on this subsample.

The welfare loss might be smaller if all regions and seasons were considered. Second,

they focus on the e↵ect of a heavily polluted day (days with PM2.5 > 150µg/m3),

while my analysis examines the e↵ect of a 1 µg/m3 increase in PM2.5.

5 Robustness Checks

In this section, I first test the validity of the IV. IV estimates can be interpreted as

the local average treatment e↵ect (LATE) when the monotonicity assumption holds

(Angrist and Imbens,1995). In this paper, this assumption will be satisfied if every

county within a geographic cluster group experienced a change in pollution in the same

direction when the wind blows from a 90-degree direction bin, and will be violated if

19The database o↵ers 21 primary activity types. However, it is predominantly focused on outdoor
recreation activities. However, as both indoor and outdoor activities are forms of leisure, I use these
estimates as a rough proxy for welfare valuation.

206595 visits reduction per day ⇥ 93.89 welfare loss per day ⇥ 365 days
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some counties experience changes in di↵erent directions with others counties within

the same cluster group. One way Deryugina et al. (2019) assess the validity of this

assumption is by varying the number of geographic clusters and the sizes of the wind

direction bins. I follow a similar approach by changing the number of geographical

clusters from 20 to 10 and 30 and reducing the size of wind angle bins from 90 degrees

to 60 degrees. In Table 7, Column 1 is the original specification, Column 2 and 3

change the number of geographical clusters, and Column 4, 5, and 6 decrease the size

of wind angle bins. In all cases, the IV estimates are similar to the main specification,

supporting the robustness of the main result to di↵erent instrument choices (Table

7). In addition, I address potential spatial autocorrelation by clustering the standard

errors at the county-day level. As shown in Table A3, the estimates remain significant.

Table 7. Robustness of IV Estimates to Instrument Choices

(1) (2) (3) (4) (5) (6)
PM2.5 (µg/m3) -0.65⇤⇤⇤ -0.78⇤⇤⇤ -0.64⇤⇤⇤ -0.67⇤⇤⇤ -0.54⇤⇤⇤ -0.54⇤⇤⇤

(0.03) (0.03) (0.03) (0.03) (0.03) (0.02)
Number of geographic clusters 20 10 30 10 20 30
Size of wind angle bins (degrees) 90 90 90 60 60 60
R2 0.80 0.80 0.80 0.80 0.80 0.80
Observations 4,457,413 4,457,413 4,457,413 4,457,413 4,457,413 4,457,413
F-statistic 102.2 191.9 71.3 136.8 76.9 55.0
Dependent Variable Mean 0.73 0.73 0.73 0.73 0.73

Notes: This table reports the IV estimates using equation (1) and equation (2) when
varying the instrument choices. The baseline model (shown in column (1)) aggregates
location into 20 clusters and wind direction into 90-degree intervals. The dependent
variable is the log of visit rates at all outdoor recreational facilities. All coe�cient esti-
mates are multiplied by 100 to demonstrate the e↵ect in percentage points. Standard
errors clustered at the county level are reported in parentheses. Dependent variable
mean is the average visit rate in percentage terms.

Another underlying assumption of this IV approach is that the variation comes

primarily from the pollution that is transported by wind rather than generated locally.

If this underlying assumption holds, then the first stage should be generally weak on

days with low wind speeds and vice versa. To further examine the validity of this IV

approach, I calculate the first-stage F-statistics separately by quintiles of daily wind

speed. As shown in Figure 3, the strength of the first stage increases as wind speed

increases. This implies the pollution variation is mainly due to non-local transport

by wind, which assesses the validity of my approach.
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Figure 3. Relationship Between the First-stage F Statistics and Wind Speed

Notes: This figure displays the First-stage F Statistics for five subsamples that each include days
that fall within a particular wind speed quintile. The first-stage F-statistics are generally smaller
on days with low wind speeds and bigger on days with high wind speeds.

In addition, Table 8 indicates that the main specification is robust to variations in

the number of instrument lags included. This demonstrates that the main estimates

are not driven by lagged e↵ects from PM2.5 on previous days, and therefore, can be

properly interpreted as the impact of a one-unit increase in daily PM2.5 levels.

Table 8. Robustness of IV Estimates to Including Di↵erent Instrument Lags

(1) (2) (3) (4) (5) (6)
1 lead and 1 lag 1 lag 2 lags 3 lags 4 lags 5 lags

PM2.5 (µg/m3) -0.65⇤⇤⇤ -0.64⇤⇤⇤ -0.62⇤⇤⇤ -0.62⇤⇤⇤ -0.64⇤⇤⇤ -0.64⇤⇤⇤

(0.03) (0.03) (0.03) (0.03) (0.03) (0.03)
R2 0.80 0.80 0.80 0.80 0.80 0.80
Observations 4,457,413 4,457,413 4,454,341 4,451,269 4,448,197 4,445,125
F-statistic 102.2 123.1 107.0 118.8 103.2 99.0
Dependent Variable Mean 0.73 0.73 0.73 0.73 0.73 0.73

Notes: This table reports the IV estimates using equation (1) and equation (2) when
including di↵erent number of instrument lags. The baseline model (shown in column
(1)) does not include any lags. The dependent variable is the log of visit rates at
all outdoor recreational facilities. All coe�cient estimates are multiplied by 100 to
demonstrate the e↵ect in percentage points. Standard errors clustered at the county
level are reported in parentheses. Dependent variable mean is the average visit rate in
percentage terms.

Then, I check the robustness of the model specification. As a first test, I estimate

the regressions with di↵erent sets of fixed e↵ects and weather controls. As shown

in Table 9, the main result is robust to including di↵erent combinations of fixed
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e↵ects and weather control, which implies the estimate in the main specification is

not driven by seasonal or regional patterns. Additionally, I estimate the regressions

with the dependent variable in the form of inverse hyperbolic sine of visit levels rather

than the log of visit rates. The estimates in Table 10 are comparable to the main

specification, which implies the main result is insensitive to the form of the outcome

variable.

Table 9. Robustness of IV Estimates to Including Di↵erent Forms of Weather Con-
trols and Fixed E↵ects

(1) (2) (3) (4) (5)
PM2.5 (µg/m3) -0.65⇤⇤⇤ -0.57⇤⇤⇤ -0.62⇤⇤⇤ -0.71⇤⇤⇤ -0.45⇤⇤⇤

(0.03) (0.03) (0.03) (0.05) (0.03)
form of weather controls linear linear linear quadratic quadratic
county-by-year fixed e↵ects X X X X X
county-by-month fixed e↵ects X X
year-by-month fixed e↵ects X X X
state-by-month fixed e↵ects X X
state-by-year fixed e↵ects X
R2 0.80 0.77 0.78 0.77 0.76
Observations 4,457,413 4,457,413 4,457,413 4,457,413 4,457,413
F-statistic 102.2 105.1 87.0 65.4 83.0
Dependent Variable Mean 0.73 0.73 0.73 0.73 0.73

Notes: This table reports the IV estimates using equation (1) and equation (2) when
including di↵erent combinations of fixed e↵ects and weather controls. All coe�cient
estimates are multiplied by 100 to demonstrate the e↵ect in percentage points. De-
pendent variable mean is the average visit rate in percentage terms. Standard errors
clustered at the county level are reported in parentheses.
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Table 10. Robustness to Including Di↵erent Forms of Outcome

(1) IV
IHS(visits) ⇥ 100

PM2.5 (µg/m3) -0.67⇤⇤⇤

(0.04)
Temperature (°C) 0.23⇤⇤⇤

(0.00)
Precipitation (mm) -1.75⇤⇤⇤

(0.04)
Wind speed (m/s) -0.98⇤⇤⇤

(0.03)
First-stage F stat 94.2
Dependent Variable Mean 0.73
Fixed E↵ects Yes
R2 0.97
Observations 4457,413

Notes: This table reports the OLS and IV estimates using equation (1) and equation
(2) when the dependent variable is the inverse hyperbolic sine transformation (IHS)
of visits. In the main specification, the dependent variable is the log of visit rates
at all outdoor recreational facilities. Standard errors clustered at the county level are
reported in parentheses. Dependent variable mean is the average visit rate in percentage
terms.

For a final robustness check, I estimate the regression using di↵erent sub-samples.

The sample period ranges from January 1, 2018, to December 31, 2021, which includes

the COVID-19 pandemic that dramatically a↵ects individuals’ mobility patterns. To

ensure that the results are not influenced by public health guidance on leisure activi-

ties, I estimate the e↵ect separately before and after the break out of the COVID-19

pandemic21. As shown in Table A4, the estimates are very similar, indicating the neg-

ative impact is not driven by pandemic-related restrictions. In addition, A5 shows the

robustness of the main specification when excluding counties without satellite data.

6 Conclusion

This paper presents a large-scale analysis of the impacts of PM2.5 on visit rates at

leisure facilities across the United States. I use an instrumental variable approach

to address the endogeneity of air pollution, and find a significant negative e↵ect of

21The cuto↵ date for dividing the sample is March 11, 2020, which is when the World Health
Organization (WHO) declared COVID-19 a pandemic.
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PM2.5 on visit rates. My preferred model implies that a 1 µg/m3 increase in PM2.5

leads to a 0.65 % decrease in visit rates on average, which is significant across di↵erent

income groups and location types. This translates a reduction of 6595 visits or an

annual economic cost of over 200 million nationwide. Overall, the results in this

paper indicate the presence of behavioral adjustments in response to air pollution

fluctuations, which underscore the importance of characterizing avoidance behavior

when analyzing the impacts of air pollution.

This study is not without limitations. First, while I focus on the e↵ects of air

pollution on daily leisure activities, I am unable to study the potential long-term

adjustments individuals make. Second, even though the phone location-based visi-

tation data is shown to be representative of the population at the county level and

above, aggregating data to the county level ignores individual variation and causes

information loss. For example, county-level data does not account for individual-

specific variables, such as age, race, education level, and health condition. Third,

the reduced-form approach can only identify the combined e↵ect of air pollution on

leisure activities, which makes it hard to disentangle the pure avoidance e↵ect. For

example, people who fall ill on a polluted day may not engage in leisure activities.

Despite these limitations, this paper makes several contributions. First, it provides

a large-scale estimation of the causal e↵ect of air pollution on leisure activities, which

is more representative than previous studies. Second, this paper has important policy

implications. It provides evidence that people take avoidance behavior and reduce

leisure activities on polluted days, which suggests studies ignoring avoidance behavior

when estimating the cost of air pollution may su↵er from bias. In addition, avoidance

behavior itself is costly. When individuals choose to stay home to avoid pollution,

they forgo the leisure activities that they could potentially have enjoyed on a cleaner

day. Consequently, the lost leisure caused by air pollution should also be considered

as part of the pollution cost.
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A Appendix Tables and Figures

Appendix Table A1. Summary Statistics - Number of Visits

Variables Mean SD N
All Facilities 818.47 2915.74 4,463,557

Outdoor Facilities
Zoos and Botanical Gardens 7.80 16.30 927,381
Nature Parks 207.73 681.24 3,552,409
Amusement Parks 14.30 32.45 1,952,944
Golf Courses 34.75 73.41 2,984,282
Marinas 10.07 25.83 1,145,578

Other Facilities
Museums 13.98 37.78 2,723,077
Casinos 26.30 75.03 398,944
Bowling Centers 17.10 29.91 1,857,387
Restaurants 518.45 1953.93 4,415,096
Supermarkets 95.58 341.19 4,139,044

Appendix Table A2. AQI Categories corresponding to PM2.5 Concentrations

Category Designated Color AQI Index PM2.5 Concentration (µg/m3)
Good Green 0-50 0.0-12.0
Moderate Yellow 51-100 12.1-35.4
Unhealthy for Sensitive Groups Orange 101-150 35.5-55.4
Unhealthy Red 151-200 55.5-150.4
Very Unhealthy Purple 201-300 150.5-250.4
Hazardous Maroon 301-500 250.5-500

Source: National Ambient Air Quality Standards for Particle Pollution 22.

22https://www.epa.gov/sites/default/files/2016-04/documents/2012_aqi_factsheet.p
df.Accessed Feb 25, 2023
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Appendix Table A3. Robustness to Clustering Level

(1) (2) (3) (4) (5) (6)
PM2.5 (µg/m3) -0.65⇤⇤⇤ -0.78⇤⇤⇤ -0.64⇤⇤⇤ -0.67⇤⇤⇤ -0.54⇤⇤ -0.54⇤⇤

(0.22) (0.23) (0.20) (0.22) (0.21) (0.20)
Number of geographic clusters 20 10 30 10 20 30
Size of wind angle bins (degrees) 90 90 90 60 60 60
R2 0.80 0.80 0.80 0.80 0.80 0.80
Observations 4,457,413 4,457,413 4,457,413 4,457,413 4,457,413 4,457,413
F-statistic 102.2 191.9 71.3 136.8 76.9 55.0
Dependent Variable Mean 0.73 0.73 0.73 0.73 0.73 0.73

Notes: This table reports the IV estimates using equation (1) and equation (2) when varying
the instrument choices. The baseline model (shown in column (1)) aggregates location into 20
clusters and wind direction into 90-degree intervals. The dependent variable is the log of visit
rates at all outdoor recreational facilities. All coe�cient estimates are multiplied by 100 to
demonstrate the e↵ect in percentage points. Standard errors clustered at the county level are
reported in parentheses. Dependent variable mean is the average visit rate in percentage terms.

Appendix Table A4. Robustness to COVID-19 Pandemic

(1) Before COVID (2) During COVID (3) After COVID
log(visit rates) ⇥100 log(visit rates) ⇥ 100 log(visit rates) ⇥ 100

PM2.5 (µg/m3) -0.40⇤⇤⇤ -0.60⇤⇤⇤ -0.52⇤⇤⇤

(0.03) (0.06) (0.05)
First-stage F stat 136.3 38.2 26.1
Dependent Variable Mean 0.68 0.70 0.85
Fixed E↵ects Yes Yes Yes
R2 0.83 0.80 0.80
Observations 2,443,150 830,890 1,183,373

Notes: This table presents IV estimates using equation (1) and equation (2) for di↵er-
ent time periods. Standard errors are reported in parentheses and are clustered at the
county level. Dependent variable mean is the average visit rate in percentage terms.
Before COVID denotes observations before March 11, 2020, when many U.S. states
began implementing stay-at-home orders. During COVID denotes observations from
March 15, 2020, to December 11, 2020, when the FDA issued an emergency use autho-
rization for the COVID-19 vaccine. After COVID denotes observations after December
11, 2020.
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Appendix Table A5. Robustness to Excluding Counties without Satellite Data

(1) IV
log(visit rates) ⇥ 100

PM2.5 (µg/m3) -0.59⇤⇤⇤

(0.05)
Temperature (°C) 0.66⇤⇤⇤

(0.00)
Precipitation (mm) -5.94⇤⇤⇤

(0.15)
Wind speed (m/s) -1.40⇤⇤⇤

(0.06)
First-stage F stat 24.0
Dependent Variable Mean 0.74
Fixed E↵ects Yes
R2 0.78
Observations 1,658,591

Notes: This table reports the e↵ect of daily PM2.5 on outdoor reaction visit rates using
only counties with satellite data. In the main specification, counties without satellite
data are interpolated using IDW. Dependent variable mean is the average visit rate
in percentage terms. Fixed e↵ects include county-by-year and county-by-month FE.
Standard errors are clustered at the county level.

Appendix Table A6. Robustness Check for the E↵ect of Air Quality Advisories

(1) (2) (3) (4)
IHS(visit) log(visit rates) log(visit rates) log(visit rates)

Advisory -0.65⇤⇤ 1.06⇤⇤⇤ -0.08 -0.11
(0.39) (0.31) (0.06) (0.07)

PM2.5 (µg/m3) -0.01⇤⇤⇤ -0.02⇤⇤⇤ -0.01⇤⇤⇤ -0.01⇤⇤⇤

(0.00) (0.00) (0.00) (0.00)
Cuto↵ 35.5 µg/m3 35.5 µg/m3 10 µg/m3 15 µg/m3

county-by-month FE X X X X
county-by-year FE X X X
year-by-month FE X X X X
R2 0.97 0.78 0.81 0.81
Dependent Variable Mean 0.73 0.73 0.73 0.73
Observations 1,660,881 1,660,881 1,660,881 1,660,881

Notes: This table presents RD estimates using equation (3). Advisoryct indicates that
PM2.5 concentration is above the orange category in county c at time t. All coe�cient
estimates are multiplied by 100 to demonstrate the e↵ect in percentage points. Fixed
e↵ects include county-by-year, county-by-month, and month-by-year FE. Dependent
variable mean is the average visit rate in percentage terms. The cuto↵ for the running
variable is 35.5 µg/m3. Column (1) shows the results when the outcome is IHS of visits.
Column (2) displays the results when county-by-year FE is excluded. Column (3) and
(4) present the results for a false cuto↵ value (10 µg/m3 or 15 µg/m3) for the running
variable. Standard errors clustered at the county level are reported in parentheses.
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Appendix Figure A1. County-level visit rates and PM2.5 concentration

(a) County-level Visit Rates (b) County-level PM2.5 Concentration

Notes: This figure displays average daily county means for the number of visitations (left panel)
and PM2.5 concentration (right panel) from January 1, 2018, to December 30, 2021. As a few
counties do not have any visitation data, there are some missing values in the figure.
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Appendix Figure A2. Example: Air Quality Information on iPhone with Weather

(a) when AQI  100 (b) when AQI > 100

Notes: This figure displays the weather application interface when AQI  100 (left panel) and
AQI > 100 (right panel). Specifically, if there is no air quality concern (AQI  100), then
there is no message at the top of the Weather overview. Users have to scroll down to find the
air quality information. However, if the air quality is unhealthy (AQI > 100), then the app
prominently displays information regarding unhealthy air quality at the top of the interface.
Source: https://osxdaily.com/2018/11/20/get-air-quality-info-iphone-weather/
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Appendix Figure A3. K-means Clustering Result

Notes: This figure displays the K-means clustering result based on latitude and longitude. As a
few counties do not have any visitation data for leisure facilities from Safegraph, there are some
missing values in the figure. There are 20 spatial groups in total, and each of them is represented
by a di↵erent color. After clustering, �g

b in equation (2) can vary across geographic regions.
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Appendix Figure A4. No Manipulation at the Threshold

Notes: This figure displays the density of the PM2.5 concentrations and indicates there is no
discontinuity in density at the threshold. The red line is at 35.5 µg/m3, which is the level EPA set
to protect public health.
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