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Abstract

I investigate how air pollution affects economic activity. Using over 37 billion
phone-location-based foot traffic data points from SafeGraph, I conduct a
large-scale analysis to examine the causal effect of air pollution on activity
patterns across the US. Using changes in local wind direction as an instrument
for air pollution, I characterize the dynamic response to pollution exposure. I
find that PM2.5 reduces economic activity in both the short and medium run,
with effects persisting for up to two weeks before partially recovering. The
reductions are widespread across different economic sectors, with recreational
activities experiencing the largest decline. The effect is more pronounced in
higher-income counties and areas with larger shares of children, suggesting
greater awareness among wealthier or more vulnerable populations.
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1 Introduction

Air pollution imposes significant costs on human well-being. Its negative impacts on

morbidity and mortality are well-documented (Currie and Neidell, 2005; He et al.,

2016; Deschenes et al., 2017; Deryugina et al., 2019; Molitor et al., 2023; Barwick

et al., 2024). Air pollution can also influence daily behaviors, affecting decisions

about where people go and what they do. However, the extent to which air pollu-

tion affects economic activities remains largely unexplored. Prior studies typically

focus on specific types of activities, such as visits to zoos, national parks, or movie

theaters (Neidell, 2009; Keiser et al., 2018; He et al., 2022). Yet, air pollution may

have much broader effects, affecting other economically important activities such as

shopping and restaurant dining.1 Widespread behavioral changes can carry signifi-

cant economic implications, as reductions in economic activity due to air pollution

can lower overall economic output. Quantifying these broader effects of air pollution

on daily activities is important for understanding its impact on human welfare and

for designing optimal environmental policies.

In this paper, I conduct the first large-scale estimation of the causal effect of daily

air pollution fluctuations on economic activity in the United States. Conventional

datasets on daily activities often focus on specific regions or sectors (e.g., hiking,

cycling, or zoo visits), making it difficult to assess the broader effects of air pollution

on economic activities. I address this issue using foot traffic data from SafeGraph,

which aggregates de-identified geospatial data from millions of US smartphones.

My dataset combines over 37 billion trips across a broad range of industries with

satellite-based air pollution data covering the continental United States from 2018 to

2021. A primary identification concern when estimating the effect of air pollution is

endogeneity. For instance, Ordinary Least Squares (OLS) estimates may be biased

due to reverse causality, as visitation-related traffic could increase local air pollution.

To address this concern, I use changes in wind direction as an instrumental variable

(IV) for air pollution to estimate its causal effect on daily economic activities.

I find that air pollution leads to statistically and economically significant re-

ductions in daily activities. On average, a 1 µg/m3 increase in PM2.5 concentra-

tion—approximately 10% of the sample mean—results in a 0.29% decrease in daily

activity in the short run (contemporaneous), which corresponds to a nationwide

1In my sample, retail trade, accommodation and food services, and entertainment sectors are
the three largest sectors, accounting for more than 60% of trips.
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reduction of 24.5 million trips annually.2 In the medium run (over one month), the

cumulative effect of a one-day air pollution exposure deepens over two weeks, reach-

ing a 1.27% decline, before gradually recovering. By the end of one month, the point

estimate is about two times larger than the contemporaneous effect. However, as

the time window extends, the estimates become less precise due to wider standard

errors. This pattern of persistent decline followed by partial recovery may reflect

temporary health impacts of pollution, which take time to recover and still suppress

activity even after air quality improves.

The reductions are significant across many industries, indicating that the effect

of air pollution on daily activities is more widespread than previously thought.

Entertainment and recreation activities experience the most substantial declines (a 1

µg/m3 increase in PM2.5 concentration results in a 0.47% contemporaneous decrease

in recreational activities), likely due to the greater flexibility of these activities

compared to other daily routines. Reductions are also more pronounced for outdoor

facilities than for indoor ones, presumably because outdoor activities amplify the

negative health effects of pollution through increased respiration and exposure.

I also examine heterogeneity in responses to air pollution across different income

levels and demographic groups. The reduction in daily activities is more pronounced

in counties with higher incomes and larger proportions of children, suggesting that

wealthier or more vulnerable populations may have greater awareness of elevated

air pollution levels. I find that minority populations exhibit smaller behavioral

responses to air pollution, which may partially explain disproportionately greater

negative health impacts of air pollution on Black individuals compared to White

individuals (Alexander and Currie, 2017; Gillingham and Huang, 2021). While

previous literature on environmental injustice has primarily focused on the unequal

distribution of pollution (Banzhaf et al., 2019; Jbaily et al., 2022), my findings

emphasize the role of avoidance behavior in exacerbating these disparities. Even

when exposed to the same levels of air pollution, low-income and minority groups are

less likely to adjust their behavior to mitigate exposure, which may further deepen

environmental justice issues. Given that these groups are disproportionately likely

to live in more polluted areas (Mikati et al., 2018; Heblich et al., 2021; Tessum et al.,

2021), addressing this unequal burden may require targeted policy interventions.

This paper makes three main contributions. First, it provides the first large-

2This is calculated as 0.29% × 0.06985 visits per person per day × 331.9 million people ×
365 days ≈ 24.6 million trips annually.
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scale estimation of the causal effect of air pollution on daily activities in the United

States. Existing literature studying the effects of air pollution on daily activities

generally relies on limited samples from specific regions (Bresnahan et al., 1997;

Zivin and Neidell, 2009), or a specific activity type, such as visitin national parks

(Keiser et al., 2018), camping (Gellman et al., 2022) or watching movies (He et al.,

2022), which makes the generalizability of these estimates unclear. In contrast,

my analysis uses nationwide phone-location data and examines a broader range of

activities, making it more representative than previous studies. My findings suggest

that air pollution leads to reductions in activities across most industries, indicating

that the behavioral response to air pollution is more widespread than previously

understood.

Second, this paper investigates whether individuals respond to day-to-day pollu-

tion fluctuations, adding to the relatively understudied topic of avoidance behavior.

Previous studies show that air quality alerts prompt avoidance behavior (Neidell,

2009; Altindag et al., 2017). However, air quality warnings are rare and triggered

only when the Air Quality Index exceeds a certain level, while negative effects of air

pollution increase even before this threshold (Zivin and Neidell, 2009). Therefore,

how individuals respond to these alerts does not necessarily reflect how they respond

to air quality itself. In the absence of an air quality alert, individuals might not be

aware of elevated pollution levels. My results are not solely driven by air quality

alerts, indicating that people adjust their activities in response to more common,

everyday pollution fluctuations. This finding suggests that avoidance behavior is

more widespread than previously recognized, which in turn implies that the costs of

pollution are underestimated.

Third, this paper highlights the importance of characterizing behavioral re-

sponses when quantifying the externalities of air pollution. Such responses can

be either proactive, based on information or perceived risk, or reactive, driven by

health symptoms. Ignoring these changes biases estimates downward, since health

impacts would be larger if people continued their usual activities despite pollution.

At the same time, behavioral adjustments impose their own costs, either through

additional expenditures (Ito and Zhang, 2020; Zhang and Mu, 2018) or foregone

utility. For example, staying home and limiting daily activities may reduce physical

activity, increasing risks of obesity (Hankinson et al., 2010), depression, and anxiety

(Paluska and Schwenk, 2000), which in turn generate broader societal costs. Shifts

in behavior can also disrupt key industries and lower overall economic output. Be-
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cause these responses are widespread, accurately quantifying them is essential for

understanding the true costs of air pollution and designing effective policies.

The rest of the paper is organized as follows. Section 2 describes the data and

provides summary statistics. Section 3 presents the conceptual framework. Section

4 introduces the empirical strategy. Section 5 presents the main results, examines

heterogeneity, explores mechanisms, and conducts a welfare analysis. Section 6

reports robustness checks. Section 7 concludes.

2 Data

The data used in the paper comes from three main sources: mobile phone-based

economic activity data from SafeGraph, satellite-based air pollution from the Coper-

nicus Atmosphere Monitoring Service global reanalysis (EAC4), and satellite-based

weather data from EAC4 and European Centre for Medium-Range Weather Fore-

casts Reanalysis 5 (ERA5). The linkages and further details are described below.

2.1 Economic Activity Data

I obtain the economic activity data from SafeGraph.3 The dataset includes informa-

tion collected from over 45 million smart mobile devices and covers over 3.6 million

Points of Interest (POI) across the United States. In total, I obtain over 37 bil-

lion trips from January 1, 2018, to December 30, 2021, across the United States.

As shown in Table C.1, the vast majority of trips documented in the SafeGraph

data are business-related, including visits to retail stores, hotels, restaurants, and

entertainment facilities, which account for 57% of the total raw visits.

SafeGraph conducts a data quality evaluation by comparing its demographic data

with the American Community Survey (ACS) data from the US Census and finds

that its data are statistically representative of the population at the county level and

above (Squire, 2019; Chang et al., 2022). Therefore, for empirical analysis, I match

each location to its county based on latitude and longitude, and then aggregate visits

to the county level. After aggregating all visits to the county level, I have 4,507,400

county-day observations. Additionally, since the dataset includes industry categories

based on the North American Industry Classification System (NAICS) code, I am

able to analyze foot traffic to different categories separately. The number of county-

3https://www.safegraph.com/. Accessed Sep 12, 2023.
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day observations for each category is shown in Table 1.4

Because this dataset does not contain socioeconomic or demographic information

about mobile device users for privacy reasons, I obtain county-level population and

income data from the United States Census Bureau. Since county populations vary

widely and more populated counties tend to have more visits, I use visit rates rather

than raw visit numbers as the dependent variable. To calculate county-level visit

rates, I aggregate the total number of visits in each county and then divide by the

county’s total population.

2.2 Air Pollution Data

The Environmental Protection Agency (EPA) pollution monitors provide valuable

air quality data, but coverage is limited: more than half of the monitors only collect

data on a 1-in-3-day or 1-in-6-day schedule, resulting in a lack of data on certain

days.5 Interpolating the missing data on these days can lead to bias, as air quality

on unmonitored days tends to be worse than on monitored days due to strategic

responses (Zou, 2021).

Therefore, rather than using monitor-based data, I use satellite-based air pol-

lution data from the EAC4 reanalysis database.6 EAC4 reports PM2.5 and other

atmospheric data every 3 hours on a 0.75◦×0.75◦ grid (≈ 81 km× 81 km), which is

derived from a combination of satellite observations and atmospheric model simula-

tions. I construct county-level daily PM2.5 in the following way: for counties covered

by multiple grid points, I average the gridded values overlapping each county; for

counties without grid points, I interpolate their PM2.5 levels using inverse distance

weighting (IDW) based on the latitude and longitude of the county centroid. I then

match the visit data with the air pollution data using county code and date. Figure

C.1 shows the average county-level visit rates and PM2.5 levels from January 1,

2018, to December 30, 2021. As a few counties do not have any visit data from

SafeGraph, there are some missing values in the figure.

4Note that the number of observations varies across categories because some counties may not
have facilities of certain types.

5See EPA’s Sampling Schedule Calendar: https://www.epa.gov/amtic/sampling-schedul

e-calendar
6See https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-reanaly

sis-eac4?tab=overview. Accessed September 19, 2022.
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2.3 Weather Data

The analysis in this paper contains a flexible set of control variables for weather,

including temperature, wind speed, dew point, and precipitation. Additionally, wind

direction is used as the instrument for PM2.5 concentrations.

Daily temperature, wind direction, wind speed, and dew point data are also

obtained from the EAC4 reanalysis database. I average the daily measures across

all grid points in a particular county to obtain the county-level daily measure. For

counties without grid points, I interpolate their temperature, wind direction, wind

speed, and dew point using IDW based on the latitude and longitude of the county

centroid. Specifically, wind directions and wind speeds are constructed using the

East-West wind vector (u-wind) and the North-South wind vector (v-wind) provided

in the database.7 Wind direction is defined as the direction the wind is blowing from.

In addition, I obtain precipitation data from the Copernicus ERA5 hourly re-

analysis database. Precipitation data are reported on a 0.25◦×0.25◦ grid (≈ 27km×
27km). I construct the county-level daily precipitation by averaging the hourly data

on a given day with grid points within a particular county. For counties without

grid points, I interpolate their precipitation using IDW based on the latitude and

longitude of the county centroid.

2.4 Summary Statistics

Table 1 displays summary statistics for the main estimation sample, consisting of

4,507,400 county-day observations. The average daily concentration of PM2.5 is

11.5 µg/m3, with a standard deviation of 16.64.8 Demographic characteristics are

measured at the county level in 2017. On average, counties in the sample have a

population of approximately 105,050, with about 5.8% of residents under age 5, 77%

of residents White, and a per capita income of roughly $26,000.
The average daily visit rate across all POIs within counties is 69.85 visits per

1,000 people.9 The Retail Trade sector exhibits the highest mean visit rate at 22.50

7Note that wind directions and speed are vectors, so they cannot be averaged or interpolated
numerically. Therefore, when averaging or interpolating, I first take the average of the two vectors
and then calculate the average wind direction and wind speed using the average vectors.

8This is slightly higher than the average PM2.5 concentration calculated using EPA ground
monitors. One possible explanation for this discrepancy is strategic monitor placement, as dis-
cussed in Grainger et al. (2019).

9Note that the data from SafeGraph were collected from over 45 million mobile devices, roughly
14% of the US population. The raw number of visits before aggregating to the county level is
reported in Table C.1.
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per 1,000 people, followed by the Accommodation and Food Services sector at 14.58

visits per 1,000 people. Most counties have at least some activity in each sector;

a notable exception is the Mining, Quarrying, and Oil and Gas Extraction sector,

where relevant POIs are missing in the majority of counties, resulting in very few

observations.

Table 1. Summary statistics

Variables Mean SD N
Pollution

PM2.5 (µg/m3) 11.50 16.64 4,507,400
Weather

Temperature (°C) 13.53 10.73 4,507,400
Total precipitation (mm) 0.31 0.70 4,507,400
Wind direction (◦) 193.19 94.75 4,507,400
Wind speed (m/s) 2.73 1.55 4,507,400
Dew point (°C) 6.81 10.81 4,507,400
Visibility (km) 17.55 3.87 4,507,400

Demographics
Population 105,050 336,591 3,100
Age under 5 (%) 5.84 1.19 3,100
White (non-Hispanic) (%) 77.13 19.77 3,100
Per capita income (USD) 26,011 6,215 3,100

Visit Rates (per 1,000 people)
All POIs 69.85 41.51 4,507,400

44-45: Retail Trade 22.50 14.28 4,506,558
72: Accommodation and Food Services 14.58 12.39 4,491,452
61: Educational Services 8.03 8.84 4,466,749
71: Arts, Entertainment, and Recreation 6.48 9.13 4,322,150
53: Real Estate and Rental and Leasing 5.73 7.44 3,858,106
62: Health Care and Social Assistance 4.88 3.86 4,449,158
81: Other Services 4.54 6.01 4,495,995
48-49: Transportation and Warehousing 1.33 2.62 4,482,408
92: Public Administration 1.11 1.55 4,468,576
31-33: Manufacturing 0.87 2.43 3,875,683
52: Finance and Insurance 0.73 0.72 4,282,607
51: Information 0.46 0.78 3,944,703
42: Wholesale Trade 0.45 0.76 3,677,317
54: Professional, Scientific, and Technical Services 0.41 0.48 4,040,757
23: Construction 0.31 0.50 3,614,912
55: Management of Companies and Enterprises 0.31 1.70 1,383,221
22: Utilities 0.24 0.63 2,228,604
56: Administrative and Support and Waste Services 0.18 0.34 3,009,650
21: Mining, Quarrying, and Oil and Gas Extraction 0.17 0.20 8,750
11: Agriculture, Forestry, Fishing and Hunting 0.11 0.27 658,854

Notes: Demographic variables are measured at the county level as of 2017.
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3 Conceptual Framework

To motivate the empirical analysis, I consider a simple dynamic setting in which

individuals choose daily activity at at time t to balance the enjoyment of activity

against the health costs of pollution exposure. Per-period utility is given by:

Ut = u(at, ht) − rt δ(at),

where at is activity level, ht denotes an individual’s health condition, and rt is

ambient pollution at time t. I assume ua(at, ht) > 0, uaa(at, ht) < 0, and uh(at, ht) >

0, reflecting diminishing marginal utility of activity and positive marginal utility of

health. δ(at) captures the contemporaneous utility cost of activity under pollution.

This cost may arise from immediate discomfort due to exposure, or from concerns

about perceived pollution risk. I assume δ′(at) > 0, meaning that more activity

increases exposure cost, and δ′′(at) ≥ 0, meaning the marginal cost of additional

activity is non-decreasing.

Health evolves according to partial adjustment:

ht+1 = ht + ρ(h̄− ht)− θ(rt) at, (1)

where ρ ∈ (0, 1) is the recovery rate toward baseline health h̄, and θ(rt) is the

pollution-induced damage per unit of activity. I assume θ′(rt) ≥ 0, implying the

marginal harm from an extra unit of activity is non-decreasing (Xia et al., 2022;

Colmer et al., 2021).

The parameter h̄ represents an individual’s baseline health capacity—shaped

by factors such as age, chronic conditions, or other long-term endowments—that

determines how much utility they derive from activity and how resilient they are

to pollution exposure. Over the life cycle, h̄ would decline as individuals age or

accumulate health shocks, but over the one-month window of interest it can be

treated as stable. The adjustment term ρ(h̄− ht) reflects natural recovery of health

toward this baseline, while the term θ(rt)at captures short-run loss of health from

engaging in activity under pollution exposure.

The individual solves the intertemporal problem:

max
{at}Tt=0

T∑
t=0

βt [u(at, ht)− rt δ(at)] s.t. ht+1 = ht + ρ(h̄− ht)− θ(rt) at,
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where β ∈ (0, 1] is the intertemporal discount factor. The Lagrangian is:

L =
T∑
t=0

βt [u(at, ht)− rt δ(at)] +
T∑
t=0

βt+1mt+1

[
ht + ρ(h̄− ht)− θ(rt) at − ht+1

]
,

where mt is the shadow value of health at the start of period t. The first-order

condition (FOC) with respect to at is:

ua(at, ht)− rt δ
′(at)− β θ(rt)mt+1 = 0, (2)

and mt evolves as:

mt = uh(at, ht) + β(1− ρ)mt+1. (3)

Intuitively, in Equation (2), the marginal enjoyment of activity today ua(at, ht)

equals its marginal costs: the marginal disutility today rtδ
′(at) and the discounted

shadow cost of tomorrow’s health loss β θ(rt)mt+1. Equation (3) defines the shadow

value of health: one extra unit of health at the start of day t is worth its direct

marginal utility today, uh(at, ht), plus the discounted continuation value that carries

forward at rate 1− ρ.

Prediction 1 (Same-day avoidance). Define

F (at; rt,mt+1, ht) ≡ ua(at, ht)− rt δ
′(at)− β θ(rt)mt+1 = 0.

Applying the implicit function theorem,

∂a∗t
∂rt

= −Fr

Fa

=
δ′(at) + β θ′(rt)mt+1

uaa(at, ht)− rt δ′′(at)
.

The denominator is negative by concavity of utility in activity (uaa < 0) and con-

vexity of the exposure cost (δ′′ ≥ 0, ensuring an interior solution). The numerator

is positive since δ′(at) > 0 and θ′(rt) ≥ 0, with mt+1 > 0. Hence,

∂a∗t
∂rt

< 0.

Intuitively, higher pollution increases both the direct disutility of engaging in activity

(rtδ
′(at)) and the future health cost of today’s activity (βθ(rt)mt+1). Together, these

effects dominate the marginal benefit of activity, leading individuals to optimally
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reduce activity on polluted days.

Prediction 2 (Persistence and rebound). From Equation (1),

∂ht+1

∂rt
= − θ′(rt) at − θ(rt)

∂a∗t
∂rt

.

The first term is negative since θ′(rt) ≥ 0. The second term is positive since θ(rt) > 0

and ∂a∗t/∂rt < 0; this captures the offsetting effect of behavioral responses, as

individuals reduce activity when air quality worsens. The overall effect is negative

whenever

θ′(rt)at > − θ(rt)
∂a∗t
∂rt

,

meaning that the increase in per-unit health damage caused by higher pollution

dominates the health savings from reduced activity. This condition is reasonable:

although individuals adjust their behavior, these responses are generally modest

compared to the physiological damage caused by particulate pollution, and peo-

ple cannot eliminate activity altogether because of daily needs. Thus, in practice,

pollution still worsens next-day health even after accounting for these responses.

A decline in ht+1 raises the shadow value mt+1 by Equation (3). If uah(a, h) ≥
0 (activity and health are complements), then better health makes activity more

enjoyable. In this case, a decline in health raises the marginal value of health and

feeds back into the FOC at t + 1, keeping activity suppressed even once pollution

returns to normal levels. By contrast, if uah(a, h) < 0 (activity and health are

substitutes), then the mechanism weakens: a decline in health would not reinforce

avoidance, and activity may rebound more quickly or even overshoot. Iterating

Equation (1) yields

ht+k − h̄ = (1− ρ)k(ht − h̄)−
k−1∑
j=0

(1− ρ)k−1−jθ(rt+j) at+j,

so health converges toward h̄ at rate ρ when pollution normalizes. Taken together,

if marginal harm is non-decreasing in pollution and activity and health are com-

plements, a pollution shock reduces health today, raises the shadow value of health

tomorrow, and keeps activity suppressed in the near term before it gradually re-

covers as the health stock heals. This mechanism implies that whether we observe

persistence in activity responses is informative about the complementarity between
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health and activity, a hypothesis I return to in the empirical analysis.

Prediction 3 (Heterogeneity). To capture heterogeneity in behavioral responses,

let a socioeconomic or demographic characteristic y (such as income or race) scale

the contemporaneous exposure cost via λ(y) with λ′(y) > 0. Rewrite the FOC as

F (at; rt,mt+1, ht, y) ≡ ua(at, ht) − λ(y) rt δ
′(at) − β θ(rt)mt+1 = 0.

Differentiating F (·) = 0 w.r.t. y and applying the implicit function theorem,

∂a∗t
∂y

=
λ′(y) rt δ

′(at)

uaa(at, ht)− λ(y) rt δ′′(at)
< 0,

since λ′(y) > 0, δ′(at) > 0, rt ≥ 0, and the denominator is negative (interior

solution). In other words, groups with higher y place a larger weight on exposure

costs (bigger λ), so they optimally reduce activity levels on polluted days. This

channel captures the stronger avoidance observed among higher-income groups and

among whites.

Similarly, let biological or demographic vulnerability z (e.g., share of children)

shift the per-unit damage of activity through θ = θ(rt; z) with θz(rt; z) > 0. Differ-

entiating F (·) = 0 w.r.t. z,

∂a∗t
∂z

=
β θz(rt; z)mt+1

uaa(at, ht)− λ(y) rt δ′′(at)
< 0,

since θz > 0, mt+1 > 0, and the denominator is negative (interior solution). Hence

biologically more vulnerable groups (higher z), such as populations with a higher

share of children, optimally reduce activity more when pollution is high.

4 Empirical Strategy

My objective is to estimate the causal effect of acute (1-day) air pollution exposure

on economic activity. Following Deryugina et al. (2019), I model this relationship

as:

Y k
ct

Popc
= βk · PM2.5ct +Xk′

ctγ + σcy + ηcm + µw + ψmy + ϵct (4)

where c indexes counties, t indexes time at the daily level, y indexes years,
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and m indexes months. The outcome variable, Y k
ct , represents the cumulative visit

rate in county c over the k days following exposure on day t (including same-day

visits). Visit rates are calculated as the total number of visits to all facilities in

county c on date t, divided by the county’s 2020 population.10 The parameter

of interest, βk, captures the effect of acute PM2.5 exposure on k-day economic

activity. To ensure that βk is not capturing the effect of weather conditions during

the outcome window, the specification includes contemporaneous and k-lead values

of the weather variables. I also include two lags of the weather controls to address

potential confounding from past weather conditions. To minimize concerns about

autocorrelation, my OLS estimates control for two leads and two lags of PM2.5,

while my IV estimates control for two leads and two lags of the instruments.

My main specification controls for daily temperature, precipitation, wind speed,

and dew point. I generate indicators for daily average temperatures falling into

one of 14 bins, ranging from –9 to –6°C up to 24 to 27°C, with additional bins for

temperatures below –9°C and above 27°C. I also generate indicators for precipitation
quartiles, wind speed quintiles, and dew point quintiles.11 I then generate a set of

indicators for all possible interactions of these weather variables and include them

in my regressions as Xk
ct. My estimates are robust to using less flexible weather

controls or omitting weather controls entirely (Table 4). These results reinforce the

assumption that my estimates are not driven by unobserved climatic factors that

are correlated with both wind direction and economic activity.

In addition, I include a rich set of fixed effects, including county-by-year fixed

effects σcy, county-by-month fixed effects ηcm, month-by-year fixed effects ψmy and

day-of-week fixed effects µw. Specifically, county-by-year fixed effects σcy pick up

within-year variations in county-level factors that determine visits but are not cap-

tured by the control variables, such as demographic characteristics and economic

conditions. County-by-month fixed effects ηcm control for seasonal unobservables

across counties, such as different peak seasons due to different geographic features.

Day-of-week fixed effects µw pick up cyclical visit patterns within the week. Lastly,

month-by-year fixed effects ψmy captures the time-varying shocks that are common

in each month, such as economic recessions and pandemic outbreaks. I also examine

the robustness of the results by including different fixed effects. The standard errors

10I use 2020 Census counts because they provide more accurate benchmarks than ACS intercensal
estimates.

11Precipitation is categorized into quartiles instead of quintiles due to a high number of zero
observations.
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are clustered at the county level.

For OLS estimates of Equation (4) to be unbiased, the identifying assumption is

that, conditional on control variables and fixed effects, unobserved determinants of

visit rates (ϵct) are uncorrelated with variation in PM2.5. Although high-frequency

air pollution tends to be more random than long-term trends, some sources of en-

dogeneity may still bias the estimate of βk. First, there may be omitted variables

that affect both ambient pollution and economic activity. For example, a local event

could increase PM2.5 levels by raising traffic while simultaneously influencing in-

dividuals’ time allocation. Second, although reverse causality is likely minimal, it

cannot be entirely ruled out. If people choose to stay home rather than go out,

the resulting decline in economic activity could also reduce local emissions. Finally,

measurement error is a concern: satellite-based county averages are noisy proxies for

actual exposure, as spatial aggregation and interpolation smooth out local variation

and can lead to attenuation bias.

To address this concern, I leverage the pollution variation due to changes in

wind patterns to identify pollution impacts. Specifically, since wind directions are

random, I use the changes in wind direction as an instrumental variable for air

pollution to derive the causal relationship (Deryugina et al., 2019). The assumption

of this approach is that, after controlling for covariates and fixed effects, changes

in wind direction only affect people’s economic activity through their effects on air

pollution. The specification for the first stage is:

PM2.5ct =
∑
g∈G

3∑
b=0

πg
b1[Gc = g] ·WindDir90bct +Xctγ+σcy+ηcm+µw+ψmy+ϵct (5)

In Equation (5), the instrumental variable is constructed in the following manner.

WindDir90bct equals 1 if wind direction in county c falls in the 90-degree interval [90b,

90b+90) and 0 otherwise. Because the relationship between wind direction and

pollution transport is location-specific, I allow the effect of each wind instrument on

PM2.5, denoted by πg
b , to vary across geographic regions.12 To define these regions, I

apply the K-means clustering algorithm to county centroids (latitude and longitude),

classifying counties into 20 spatial groups. The clustering result is shown in Figure

C.2. 1[Gc = g] equals 1 if county c is classified into monitor group g and 0 otherwise.

12Because the effect of wind direction on pollution depends on the surrounding geography, a
westerly wind blowing clean ocean air into California is likely to have a very different impact on
local pollution levels than a westerly wind carrying industrial emissions into a community located
just east of Houston.
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Other control variables Xct and fixed effects are defined as in Equation (4).

Air pollution in a given location can originate from sources that are either close

by or far away. For instance, a city’s air quality may be affected by nearby traffic

emissions, as well as by smoke from wildfires or pollutants released by power plants

located hundreds of miles away. The source location matters because emissions from

local sources tend to disperse unevenly across nearby areas, while emissions from

more distant sources disperse more uniformly across the same region.

Equation (5) allows the effect of wind direction on air pollution to vary across

geographic groups but not within a group. Intuitively, non-local sources located

outside of the cluster are more likely to have similar effects on pollution levels in

all (or most) counties in the cluster group. As a result, Equation (5) is more likely

to capture variation in pollution driven by non-local sources. This is advantageous

because pollution driven by local sources may not affect all individuals residing

within the area in the same way, leading to measurement error.13 In Section 6, I

provide evidence that the pollution variation exploited in my design is primarily

driven by non-local sources. Therefore, the effects of wind direction on pollution

should be similar for all counties within the same geographic cluster. I employ 4

bins and 20 clusters for computational ease, and the results are robust to varying

the number of wind direction bins and geographic clusters (Table C.10). Figure C.3

illustrates my first-stage variation using California state as an example.

5 Empirical Results

5.1 Impact of Pollution on Economic Activity

I begin by estimating the effect of daily air pollution exposure on same-day activ-

ity, i.e., k = 0 in Equation (4). Table 2 displays estimates from both OLS and IV

models. For the IV strategy, I use daily changes in county-level wind direction as an

instrument for daily changes in county-level PM2.5 concentrations. The first-stage

F-statistic in column (2) is 87.36, which indicates that weak instrument concerns

are minimal. Since PM2.5 is endogenous, I rely on the IV approach as the preferred

empirical strategy. The estimate in column (2) implies that a 1 µg/m3 increase in

PM2.5 reduces visit rates by approximately 0.20 visits per thousand people, equiv-

13Consider a local pollution source located in the center of a cluster. When the wind blows from
the west, counties to the west of this source will record low pollution levels, and counties to the
east will record high pollution levels. In this case, the instrument does not generate consistent
pollution variation across counties in the cluster, weakening the first stage.
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alent to a 0.29% decline relative to the daily mean. columns (3)-(5) report the

effects for the three largest sectors in the sample: retail trade, accommodation and

food services, and entertainment and recreation. column (5) shows that the relative

effect is largest in the entertainment and recreation sector, at about 0.47%, nearly

twice the overall average. This result is potentially because recreational activities

are more flexible and easier to adjust or cancel.

The IV estimate in column (2) is substantially larger than the OLS estimate

in column (1), suggesting that OLS estimation suffers from significant bias. This

downward bias is common in quasi-experimental studies on air pollution and is

generally thought to be, at least in part, due to measurement errors in pollution

exposure (Schlenker and Walker, 2016; Ebenstein et al., 2017; Deryugina et al.,

2019; Alexander and Schwandt, 2022).

Table 2. OLS and IV estimates of the effect of PM2.5 on 1-day visits

OLS IV

(1) (2) (3) (4) (5)
PM2.5 (µg/m3) -0.003∗∗∗ -0.20∗∗∗ -0.06∗∗∗ -0.04∗∗∗ -0.03∗∗∗

(0.0014) (0.01) (0.005) (0.005) (0.003)
Relative effect (%) -0.004 -0.29 -0.27 -0.28 -0.47
Location types All All Retail Accommodation Entertainment

Trade and Food Services and Recreation
First-stage F-statistic 87.36 87.26 81.88 82.18
Dependent variable mean 69.85 69.85 22.40 14.49 6.41
Fixed effects Yes Yes Yes Yes Yes
R2 0.87 0.86 0.90 0.85 0.73
Observations 4,501,200 4,495,000 4,487,988 4,472,910 4,304,146

Notes: This table reports the OLS and IV estimates using Equation (4) and (5). The dependent

variable is number of visits per thousand people on the day of exposure. All regressions control for

bins of mean temperature, precipitation, wind speed, and dew point, as well as two lags of these

weather controls. IV estimates also include two lags and two leads of instruments. Fixed effects

include county-by-year, county-by-month, day-of-week, and month-by-year fixed effects. Column

(1) and (2) show the effect for all POIs, whereas columns (3)-(5) are for three specific types of

POIs. Standard errors are clustered at the county level. ***p < 0.01; **p < 0.05; *p < 0.1.

Figure 1 extends this analysis by presenting percentage changes across all eco-

nomic sectors.14 While most estimates are negative, the magnitudes vary, ranging

from 0.47% in entertainment and recreation to 0.08% in health care. I find no sta-

tistically significant effect for several non-consumer-facing sectors, including man-

ufacturing, waste management, public administration, professional and technical

14Sectors are defined by 2-digit NAICS codes. The raw number of visits and each industry’s
share in the sample are reported in Table C.1.
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services, wholesale trade, and construction. This suggests that sectors less reliant

on consumer foot traffic are less sensitive to air pollution.

Figure 1. Relative effect (percent of 1-day visits) by 2-digit NAICS codes

Notes: This figure displays the heterogeneous treatment effects of air pollution on daily activities
across industries, categorized by their 2-digit NAICS codes. Each bar represents an IV estimate
from Equation (4) of the effect of 1-day PM2.5 exposure on same-day visits in each sector. The
percentage next to each industry name indicates its share of raw visits in the sample. Bars show
estimated effects, and horizontal lines indicate 95% confidence intervals. The vertical black dashed
line shows the average effect from the main results across all POIs. Industries accounting for less
than 0.2% of raw visits are omitted due to high variance. Sectors with statistically insignificant
estimates are displayed as hollow (white) bars. The corresponding absolute effects (in visits per
thousand) are presented in Figure C.5.

Prior studies find that air pollution increases hospital admissions (Schlenker

and Walker, 2016; Deryugina et al., 2019; Ward, 2015; Wei et al., 2019; Gu et al.,

2020; Dominici et al., 2006), but Figure 1 shows fewer visits in the broader NAICS

“Health Care and Social Assistance” category. This is not necessarily a contradic-

tion. Because NAICS does not provide a separate category for acute visits such

as emergency, cardiovascular, or respiratory care, increases in these services can be

masked by declines in routine visits, resulting in a net reduction. To probe this

mechanism, I further disaggregate the health care sector into more detailed cate-

gories, distinguishing hospitals from a range of non-hospital services. As shown in

Figure 2a, pollution reduces visits to several non-hospital services, including child

day care and nursing care facilities. This pattern may reflect greater avoidance of
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non-urgent, in-person interactions on polluted days—for instance, keeping children

home from day care or curbing nursing-home visitation. In contrast, general med-

ical and surgical hospitals, which encompass emergency departments and provide

cardiovascular and respiratory care, show an increase of about 1.24 visits per 1,000

people (0.07% relative to the mean) for a 1 µg/m3 increase in PM2.5, although the

estimate is imprecise.

If vulnerable populations are more likely to seek hospital care while others cut

back on routine services, offsets should be smaller where the population is older

(Schwartz, 1994). Consistent with this, in counties with an above-median elderly

share, Figure 2b shows effects shifting from negative toward zero or positive, with a

notable increase for general hospitals. Specifically, in above-median elderly counties,

general hospitals show an increase of 5.6 visits per 1,000 people (0.33% relative to

the mean) for a 1 µg/m3 increase in PM2.5, and the effect is statistically significant.

This suggests that pollution-induced demand for acute care is partly masked by

concurrent reductions in other health care services.15

15For example, Liu et al. (2022) show that pollution increases the likelihood of refraining from
health care visits in China.
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(a) Absolute effect for all counties

(b) Absolute effect for high-elderly-share counties

Figure 2. Heterogeneous effects of air pollution on visits to health care facilities

Notes: This figure displays the heterogeneous treatment effects of air pollution on visit rates to
different health care facilities, defined by 6-digit NAICS codes. Panel (a) presents the absolute
effect (visits per thousand) for all counties, while panel (b) shows the effect for counties where the
elderly population share is above the median. Each bar shows an estimated effect; horizontal lines
indicate 95% confidence intervals. Categories with statistically insignificant estimates are displayed
as hollow (white) bars. Categories accounting for less than 0.1% of raw visits are omitted due to
high variance.

Next, I turn to entertainment and recreation—the most affected industry—and

examine more detailed facility types.16 As shown in Figure 3a, air pollution signifi-

16Facility shares are reported in Table C.3.
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cantly reduces visits to nature parks, golf courses, fitness centers, and museums. In

absolute terms, the declines range from 0.017 visits per thousand people for nature

parks to 0.0002 visits per thousand for museums. When expressed in relative terms,

however, the reductions are similar across facility types, at roughly 0.5% (Figure 3b).

In contrast, visits to bowling centers increase slightly, by about 0.27%.

(a) Absolute effect (visits per thousand)

(b) Relative effect (% of day 0 visits)

Figure 3. Heterogeneous effects of air pollution on visits to recreational facilities

Notes: This figure displays the heterogeneous treatment effects of air pollution on visit rates at
different recreational facilities, defined by 6-digit NAICS codes. Panel (a) shows the absolute
effect in visits per thousand, and panel (b) presents the relative effect as a percentage of same-day
visits. Outdoor facilities (darker blue) include golf courses and nature parks, while indoor facilities
(lighter blue) include museums, fitness centers, and bowling centers. Each bar shows an estimated
effect; horizontal lines indicate 95% confidence intervals. Categories with statistically insignificant
estimates are displayed as hollow (white) bars. The vertical blue dashed line in panel (b) represents
the average effect for all POIs. Categories accounting for less than 0.1% of raw visits are omitted
due to high variance.
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My estimates by sector are broadly consistent with prior studies (see Table C.2

for a summary of selected studies).17 For recreation and entertainment, I find that a

1 µg/m3 increase in PM2.5 (about a 10% change relative to the mean) reduces visits

by 0.47%, consistent with evidence that pollution lowers outdoor exercise and park

use. Fan (2024) estimate a 0.14% decline in outdoor activity per 1 µg/m3 increase in

PM2.5 in China, while Keiser et al. (2018) report that a 1 ppb rise in ozone decreases

U.S. national park visits by 3.9% (about 1.8% for a 10% relative increase). For food

services and retail trade, I find a 0.3% decline in visits from a 1 µg/m3 increase

in PM2.5, consistent with small but significant effects in Beijing: Sun et al. (2019)

report declines of 0.15% for restaurants and 0.1% for shopping visits, while Gao

et al. (2020) find a 0.65% decline in restaurant visits. For education, I estimate a

0.21% decline in visits, in line with studies showing that poor air quality disrupts

learning environments. For example, Chen et al. (2000) find that a 10% increase in

CO or O3 raises school absence rates by about 1% in Nevada.

For health care, I estimate an overall 0.08% decline in visits per 1 µg/m3 increase

in PM2.5. While this may initially appear different from prior findings that pollu-

tion increases acute care visits, the patterns align once the sector is disaggregated.

Deryugina et al. (2019) find that a 1 µg/m3 increase in PM2.5 raises ER visits

by 0.06% in the U.S., and Dardati et al. (2024) report increases of 0.03–0.07% in

Chile. My results show that pollution reduces visits to non-hospital services such as

nursing care and child day care, but general medical and surgical hospitals—which

encompass emergency and respiratory care—show a positive effect (0.07%), of sim-

ilar magnitude to prior work, though imprecise. Moreover, in counties with above-

median elderly populations, hospital visits rise significantly by 0.33%, reinforcing

that demand for acute care increases with pollution. Taken together, these results

are consistent with prior evidence once one distinguishes between hospitals and other

health care services, while also highlighting offsetting declines in routine care.

5.2 Dynamic Effects of Pollution on Economic Activity

Figure 4 presents IV estimates of the effect of a one-day, 1 µg/m3 increase in PM2.5

on economic activity over the month following exposure. The estimate at day 0

17For comparability, I focus on studies that use pollution levels rather than alert thresholds, and
I translate pollutants other than PM2.5 into percentage changes. Table C.2 reports the original
units, as well as studies based on alerts.
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corresponds to the estimate from column (2) of Table 2.18 If the cumulative effect

recovers over time, this suggests that people are making up for lost activity rather

than forgoing it entirely. In contrast, if the cumulative effect continues to decrease,

it suggests that pollution exposure imposes health costs that persist beyond the day

of exposure, limiting individuals’ ability to resume normal activities even after air

quality improves. Another possibility is that temporary reductions in activity lead

to behavioral inertia or habit formation, resulting in lower activity levels even after

pollution conditions return to normal.

I find a continuous decline in economic activity lasting up to two weeks, from

0.29% on the first day to 1.27% after two weeks. Activity then gradually recovers,

indicating that people partially make up for lost visits. By the end of one month,

the cumulative decline is about twice as large as the contemporaneous decline, al-

though estimates become less precise at longer horizons due to wider standard er-

rors (Figure 4).19 This dynamic aligns with findings from Barwick et al. (2024),

who document that air pollution significantly reduces spending on necessities and

supermarket visits in China within two weeks, followed by a recovery thereafter.

This observed pattern is consistent with mechanisms documented in previous

literature. Acute air pollution exposure can trigger adverse health effects and cause

people to feel unwell (Neidell et al., 2023; Schlenker and Walker, 2016; Deryugina

et al., 2019), potentially reducing their willingness or ability to engage in regular

economic activities (Graff Zivin and Neidell 2012; Hanna and Oliva 2015). Addi-

tionally, air pollution episodes have been shown to significantly increase household

medical expenditures (Barwick et al., 2024), which could crowd out discretionary

consumption. These combined health and economic impacts may explain the pro-

nounced and persistent declines observed in discretionary sectors, such as recreation

(Figure 5).

As a falsification test, Figure 4 also shows estimates of the effect of PM2.5

on cumulative activity in the two weeks prior to exposure. While there is some

fluctuation, the pre-period estimates are small and show no clear trend, supporting

the validity of my empirical strategy.

18Estimates are converted to percentage terms using average daily visit rates to ensure compa-
rability with previous results.

19Appendix Figure C.6 extends the horizon to 100 days. The cumulative effect remains signifi-
cantly below zero throughout this period, indicating that the decline does not fully disappear even
in the longer run.
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Figure 4. IV estimates of the effect of acute (1-day) PM2.5 on cumulative economic
activity up to one month after exposure

Notes: This figure displays IV estimates of the effect of a 1-day, 1 µg/m3 increase in PM2.5 on
economic activity up to one month after exposure. Effects are expressed as a percentage of day 0
visits. Visit rates are measured as cumulative visits over windows ranging from 1 to 30 days, as
indicated on the x-axis. Points show the estimates, vertical lines indicate 95% confidence
intervals, and standard errors are clustered at the county level.

Figure 5 shows how the estimated cumulative effects of a one-day PM2.5 increase

vary across economic sectors, focusing on the three largest sectors in my sample:

retail trade, accommodation and food services, and arts, entertainment, and recre-

ation. Consistent with the contemporaneous results, the recreation sector (green

solid line) experiences the largest reduction, both immediate and persistent. Over

one month, the cumulative effect in the recreation sector deepens, becoming roughly

nine times larger than the contemporaneous impact. Retail trade (blue dashed line)

and accommodation and food services (orange dashed line) exhibit similar magni-

tudes and trajectories. Although the cumulative effect in accommodation and food

services shows a further decline over one month, it stabilizes after the first week,

reflecting a persistent rather than worsening impact. Overall, these results indicate

lasting negative effects of acute pollution exposure, strongest in the recreation sector

and more moderate in retail trade and accommodation and food services.
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Figure 5. IV estimates of the effect of acute (1-day) PM2.5 on cumulative visits
over one month, by sector

Notes: This figure displays IV estimates of the effect of a 1-day, 1 µg/m3 increase in PM2.5 on
cumultaive economic activity over one month, disaggregated by the three largest sectors in the
sample: retail trade (25% of visits), accommodation and food services (21%), and recreation
(14%). Visit rates are measured as cumulative visits over a time window ranging from 0 to 30
days, as indicated on the x-axis. Points show the estimates, vertical lines indicate 95% confidence
intervals, and standard errors are clustered at the county level. Corresponding results in absolute
terms (visits per 1,000 people) are shown in Figure C.7.

Figure C.8 presents sector-specific estimates of PM2.5 effects over time for ad-

ditional industries. Sectors such as other services, finance and insurance, public

administration, and information experience an immediate decline, but after one

month, their recovery suggests that people eventually make up for lost activities

in these sectors. In contrast, transportation and warehousing, wholesale trade, and

retail trade exhibit both immediate and sustained declines, highlighting their vulner-

ability to air pollution. Interestingly, I observe a contemporaneous decline followed

by an increase in activities in real estate, educational services, and health care indus-

tries over one month. This may be due to housing searches shifting toward cleaner

areas in response to poor air quality (Chen et al., 2022; Pan, 2023), educational

disruptions such as pollution-induced school closures that increase demand for al-

ternative services outside school (Currie et al., 2009), and health effects that take

time to manifest (Simeonova et al., 2021).

Overall, the sector-level dynamics indicate that pollution changes not just the

amount but also the structure of economic activity. Losses are concentrated in
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discretionary sectors such as recreation, which are difficult to make up and therefore

imply direct welfare costs. Routine activities like retail and food services are also

depressed, creating wider economic effects for local businesses. In contrast, finance,

information, and other services tend to rebound, suggesting that some forms of

consumption can be delayed or shifted. Increases in real estate, education, and

health care highlight compensatory adjustments, as households reallocate activity

in response to disruption. Overall, these patterns show that pollution reshapes

economic behavior in ways that create lasting welfare losses and uneven sectoral

vulnerabilities, with important implications for both policy and business resilience.

5.3 Heterogeneity

A growing literature shows that exposure to air pollution and other environmen-

tal risks is unequally distributed across demographic groups (Mohai et al., 2009;

Hsiang et al., 2019). To examine whether the effects of air pollution on visits also

differ across groups, I estimate the effects separately for counties grouped by age

composition, income, and racial composition. County characteristics are measured

using 2017 ACS data and compared to the corresponding 2017 national medians. 20

These heterogeneity patterns shed light on potential mechanisms: children reflect

biological vulnerability, while income and race highlight socioeconomic resources

and constraints.

I begin with heterogeneity by age composition. Children are especially vulner-

able to pollution due to ongoing lung development (Dietert et al., 2000; Aragón

et al., 2017; Jayachandran, 2009). Counties are divided into two groups based on

whether the share of children under five is above or below the median.21 As shown

in Figure 6a, counties with more young children (darker solid line) experience larger

and more persistent declines in economic activity, suggesting a stronger behavioral

response among communities with a higher proportion of vulnerable populations.

This pattern is consistent with a health vulnerability channel, in which parents re-

duce exposure for children and health shocks take longer to resolve. Notably, since

counties with more children also have higher baseline visit rates (76.6 vs. 63.1 visits

per 1,000 people), the absolute declines in visits are even larger.22

20These county groupings may differ along other unobserved dimensions, so the comparisons
should not be interpreted as strictly causal. Instead, they provide suggestive evidence on how
responses vary across populations with different demographic characteristics.

21See Appendix Table C.5 for 1-day estimates.
22Results in absolute terms are shown in Figure C.9.
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Next, I examine heterogeneity by income. Similar to the age analysis, counties

are divided into two groups based on whether their median income is above or

below the national median. As shown in Figure 6b, high-income counties (darker

solid line) experience larger declines in economic activity both contemporaneously

and cumulatively over time. One explanation is that higher-income populations are

more aware of the health risks associated with pollution and have greater flexibility

to adjust their behavior. The larger and more persistent declines in high-income

counties cannot be explained by an information channel alone. If avoidance were

driven purely by awareness of pollution, we would expect sharper same-day drops

but a faster rebound. Instead, the lasting reductions suggest that higher-income

populations substitute to alternatives, such as online delivery, which remove the

need to make up missed visits.23 Similar to the case for age composition, since

high-income counties also have higher baseline visit rates (71.1 vs. 68.6 visits per

1,000 people), the absolute declines are even larger.

Finally, I examine heterogeneity by racial composition. Counties are grouped

based on whether their share of White residents is above or below the median. As

shown in Figure 6c, counties with a higher White share (darker solid line) experience

a sharper initial reduction in economic activity after pollution exposure, while coun-

ties with a lower White share show more muted responses. Prior research indicates

that air pollution disproportionately harms minority populations’ health (Currie

and Walker, 2011; Chay and Greenstone, 2003). One possible explanation is differ-

ential avoidance behavior: communities with a higher minority share may engage

less frequently in pollution avoidance activities, resulting in prolonged exposure and

potentially worse health outcomes. This asymmetry reinforces environmental justice

concerns, as disadvantaged populations may be simultaneously more exposed and

less able to mitigate exposure. It is worth noting that counties with a higher White

share have lower baseline visit rates (63.1 vs. 76.6 visits per 1,000 people) but still

experience slightly larger absolute reductions (Figure C.9c).

Taken together, the heterogeneity results suggest that avoidance responses are

strongest where biological vulnerability is greater or where awareness of pollution

risks and the resources to act on them are higher. This underscores that pollution

costs are unevenly distributed, both because exposure is unequal and because the

capacity to avoid it differs across groups.

23This pattern is also unlikely to reflect medical expense constraints, which are less binding for
higher-income populations.

25



(a) Higher vs. lower child share (b) Higher vs. lower income

(c) Higher vs. lower White share

Figure 6. IV estimates of the effect of acute PM2.5 exposure on economic activity,
by demographic group

Notes: Each point represents an IV estimate from Equation (4) for different subsamples, measuring
the effect of acute PM2.5 exposure on economic activity, expressed in percentage terms, across
demographic groups. The solid line represents counties with income, child share, or White share
above the median, while the dashed line represents those below the median. The cumulative effect
is measured over one month, as indicated on the x-axis. Shaded areas denote 95% confidence
intervals. All regressions include county-by-month, county-by-year, month-by-year, and day-of-
week fixed effects, along with flexible controls for temperature, precipitation, dew point, and wind
speed. Additionally, regressions incorporate leads of these weather controls, as well as two leads
and two lags of the instruments. Standard errors are clustered at the county level. Results in
absolute terms (visits per 1,000 people) are shown in Figure C.9.

5.4 Mechanisms

The conceptual framework in Section 3 highlights two broad channels through which

pollution reduces activity. The first is direct health effects: exposure raises the

marginal disutility of going out, as individuals experience physical discomfort or

must reallocate time to caregiving. The second is avoidance behavior: even in the

absence of symptoms, individuals reduce activity when they perceive pollution risks

and seek to prevent exposure.Both mechanisms decrease the utility of going out,

but they differ in timing: health effects can generate both immediate and persistent
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reductions, while avoidance primarily amplifies the same-day decline.

Health Exposure to elevated PM2.5 levels can cause acute symptoms such as

fatigue, coughing, or chest tightness, and a large literature documents that pollu-

tion worsens short-term respiratory and cardiovascular health (Neidell et al., 2023;

Schlenker and Walker, 2016; Deryugina et al., 2019; He et al., 2020; Moretti and

Neidell, 2011). These acute health shocks may reduce outside activities directly,

especially those that require physical effort or take place in crowded environments.

In the framework outlined in Section 3, pollution raises the marginal disutility of

activity, lowering optimal activity levels. In addition, if household members become

sick, time otherwise allocated to work or leisure may be diverted to caregiving, fur-

ther reducing activity (Aragón et al., 2017; Hanna and Oliva, 2015). Consistent

with this channel, I find that counties with more children—who are particularly

vulnerable to pollution—exhibit larger and more persistent declines in activity.

Beyond same-day reductions, health effects also generate persistent declines.

Symptoms often take time to subside, so individuals may remain less active even

after air quality improves. As health recovers, activity partially rebounds, but fore-

gone trips are not fully made up, producing a lasting decline. While health shocks

naturally generate persistence, other forces may also contribute. Temporary re-

ductions during polluted periods can lead to habit formation or substitution—for

example, households that shift to delivery, streaming, or home exercise may not

immediately return to prior routines. The partial rebound observed after about two

weeks may also reflect scheduling frictions. These patterns align with the dynamic

results in Section 5.2.

Information and Perceptions Avoidance behavior is often triggered not by ill-

ness, but by information and perceptions of pollution risk. Individuals may respond

to formal air quality warnings, such as EPA’s Air Quality Index (AQI) advisories or

local Action Day alerts. However, these alerts are rare events, triggered only at high

pollution levels, and my results are not driven by them. As shown in Appendix A,

responses to AQI alerts are statistically imprecise. More importantly, the reduction

in visits remains statistically significant when restricting the sample to days with

PM2.5 below 15 µg/m3, well below the alert threshold (Table C.6). This indicates

that avoidance behavior occurs even in the absence of official warnings, likely re-

flecting private information from weather apps or home monitors. Consistent with
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this interpretation, Figure 6 shows stronger responses in higher-income and higher

White-share counties, which may reflect greater awareness of pollution risks and a

wider ability to adjust daily routines or shift toward alternatives.

Perceptions of air quality may also matter. Pollution particles reduce visibility

by scattering and absorbing light, diminishing the clarity and color of what people

see. Individuals may use visibility as a salient signal of poor air quality and choose

to spend more time indoors on hazy days. In Appendix A, I provide supplementary

evidence that days with lower satellite-based visibility are associated with lower visit

rates, consistent with this perception channel. While necessarily correlational, this

analysis underscores that avoidance may arise not only from direct health burdens

but also from how pollution is perceived and communicated.

Budget Constraints Pollution can increase medical spending (Barwick et al.,

2024), which in turn may reduce discretionary consumption and activities by tight-

ening household budgets. However, this mechanism is unlikely to be first-order.

If budget constraints dominated, one would expect larger declines in lower-income

counties, where medical expenses represent a bigger burden. Instead, I find the

opposite (Figure 6b): higher-income counties exhibit larger and more persistent

declines. This suggests that while budget constraints may operate as a secondary

channel, their impact is likely overshadowed by other factors such as awareness of

pollution risks and the availability of substitutes.

6 Robustness Checks

In this section, I first test the validity of the IV. IV estimates can be interpreted

as the local average treatment effect (LATE) when the monotonicity assumption

holds (Angrist and Imbens, 1995). In this paper, this assumption will be satisfied

if every county within a geographic cluster group experiences a change in pollution

in the same direction when the wind blows from a 90-degree direction bin, and will

be violated if some counties experience changes in different directions with other

counties within the same cluster group. One way Deryugina et al. (2019) assesses

the validity of this assumption is by varying the number of geographic clusters and

the sizes of the wind direction bins. I follow a similar approach by changing the

number of geographical clusters from 20 to 10 and 30 and reducing the size of wind

angle bins from 90 degrees to 60 degrees. In Table 3, column (1) reports the baseline
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specification; columns (2)-(3) vary the number of geographic clusters; and columns

(4)-(6) reduce the wind angle bin size from 90 to 60 degrees. In all cases, the IV

estimates are similar to the main specification, supporting the robustness of the

main result to different instrument choices.

Table 3. Robustness of IV estimates to instrument choices

(1) (2) (3) (4) (5) (6)
PM2.5 (µg/m3) -0.20∗∗∗ -0.22∗∗∗ -0.18∗∗∗ -0.25∗∗∗ -0.23∗∗∗ -0.17∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Number of geographic clusters 20 10 30 10 20 30
Size of wind angle bins 90◦ 90◦ 90◦ 60◦ 60◦ 60◦

First-stage F-statistic 87.36 143.36 60.04 93.36 57.51 49.48
R2 0.86252 0.86123 0.86 0.86 0.86 0.86
Observations 4,495,000 4,495,000 4,495,000 4,495,000 4,495,000 4,495,000
Dependent variable mean 69.85 69.85 69.85 69.85 69.85 69.85

Notes: This table reports the IV estimates from Equations (4) and (5) under alternative instrument

choices. The dependent variable is the number of visits per thousand people on the day of exposure.

All regressions include county-by-month, county-by-year, day-of-week, and month-by-year fixed

effects, as well as flexible weather controls. The baseline model (column (1)) aggregates counties

into 20 clusters and wind direction into 90-degree intervals. Standard errors clustered at the county

level are reported in parentheses. ***p < 0.01; **p < 0.05; *p < 0.1.

Another underlying assumption of this IV approach is that the variation comes

primarily from the pollution that is transported by wind rather than generated lo-

cally. If this underlying assumption holds, then the first stage should be weaker on

days with low wind speeds and stronger on days with high wind speeds. To further

examine the validity of this IV approach, I calculate the first-stage F-statistics sep-

arately by quintiles of daily wind speed. As shown in Figure 7, the strength of the

first stage increases as wind speed increases. This implies the pollution variation

is mainly due to non-local transport by wind, which supports the validity of my

approach.
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Figure 7. Relationship between the first-stage F-statistics and wind speed

Notes: This figure displays the first-stage F-statistics for five subsamples, each corresponding
to a wind speed quintile. The first-stage F-statistics are generally smaller on days with low
wind speeds and larger on days with high wind speeds.

Beyond instrument validity, a key identifying assumption is that changes in wind

direction affect economic activity only through its impact on pollution levels. This

assumption would be violated if wind direction were systematically correlated with

unobserved weather conditions that also influence activity. While this cannot be

tested directly, I assess its plausibility by varying the specification of weather con-

trols (Table 4). Column (2) omits weather controls entirely, columns (3) and (4)

replace weather bins with linear and quadratic controls, and column (5) coarsens

the temperature, dew point, and wind speed bins. Across all specifications, the es-

timated effect remains stable, supporting the validity of the identifying assumption.
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Table 4. Robustness of IV estimates to alternative forms of weather controls

(1) (2) (3) (4) (5)
PM2.5 (µg/m3) -0.20∗∗∗ -0.14∗∗∗ -0.12∗∗∗ -0.17∗∗∗ -0.16∗∗∗

(0.01) (0.007) (0.01) (0.01) (0.01)
First-stage F-statistic 87.36 262.53 87.52 80.82 95.85
Dependent variable mean 69.85 69.85 69.85 69.85 69.85
Fixed effects Yes Yes Yes Yes Yes
R2 0.86 0.86 0.87 0.86 0.86
Observations 4,495,000 4,495,000 4,495,000 4,495,000 4,495,000

Weather Controls
Baseline ✓
Linear ✓
Quadratic ✓
Less granular bins ✓

Notes: This table reports IV estimates from Equations (4) and (5) using different combinations

of weather controls. The dependent variable is the number of visits per thousand people on

the day of exposure. All regressions include county-by-year, county-by-month, day-of-week, and

month-by-year fixed effects. Column (1) presents the baseline specification, controlling for bins

of mean temperature, precipitation, wind speed, dew point, and all observed combinations of

these variables. Column (2) omits all weather controls. Column (3) uses linear weather controls

instead of bins. Column (4) uses quadratic weather controls. Column (5) uses 5-degree-Celsius

temperature bins instead of 3-degree bins. Standard errors clustered at the county level are reported

in parentheses. ***p < 0.01; **p < 0.05; *p < 0.1.

Then, I check the robustness of the main specification along several dimensions.

First, Table 5 shows that the estimates are stable across different numbers of in-

strument lags, indicating that the results are not driven by lagged PM2.5 and can

be interpreted as the effect of a one-unit increase in daily PM2.5. Second, Table 6

reports estimates with alternative sets of fixed effects, confirming that the results

are not driven by seasonal or regional patterns. Third, Table C.9 presents estimates

using the log and inverse hyperbolic sine transformations instead of visit rates,

showing that the findings are insensitive to the functional form of the dependent

variable. Finally, I assess potential spatial and temporal correlation by clustering

the standard errors at multiple levels, including county, geographic group, state,

and two-way clustering by county and year. As shown in Table C.10, the estimates

remain significant across all clustering choices.
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Table 5. Robustness of IV estimates to including different instrument lags

(1) (2) (3) (4) (5)
1 lead and 1 lag 1 lag 2 lags 3 lags 4 lags

PM2.5 (µg/m3) -0.20∗∗∗ -0.13∗∗∗ -0.20∗∗∗ -0.20∗∗∗ -0.20∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.01)
# of instruments leads and lags 2 0 1 3 4
First-stage F-statistic 87.36 162.90 87.36 77.71 84.56
R2 0.86 0.86 0.8 0.86 0.86
Observations 4,495,000 4,501,200 4,495,000 4,488,800 4,482,600
Dependent Variable Mean 69.85 69.85 69.85 69.85 69.85

Notes: This table reports IV estimates from Equations (4) and (5) with different numbers of
instrument lags. The baseline model (column (1)) includes 2 leads and 2 lags. The dependent
variable is the number of visits per thousand people on the day of exposure. All regressions
include county-by-month, county-by-year, day-of-week, and month-by-year fixed effects, as well as
flexible weather controls. Standard errors clustered at the county level are reported in parentheses.
***p < 0.01; **p < 0.05; *p < 0.1.

Table 6. Robustness of IV estimates to alternative forms of fixed effects

(1) (2) (3) (4) (5) (6)
PM2.5 (µg/m3) -0.20∗∗∗ -0.23∗∗∗ -0.16∗∗∗ -0.16∗∗ -0.21∗∗∗ -0.27∗∗∗

(0.01) (0.01) (0.05) (0.06) (0.06) (0.08)
County-by-year FE ✓ ✓ ✓
County-by-month FE ✓ ✓
Month-by-year FE ✓ ✓ ✓ ✓
Day-of-week FE ✓ ✓ ✓
State-by-month FE ✓ ✓
State-by-year FE ✓ ✓ ✓
First-stage F-statistic 87.36 84.77 50.03 62.05 60.24 43.39
R2 0.86 0.80 0.81 0.31 0.26 0.27
Observations 4,495,000 4,495,000 4,495,000 4,495,000 4,495,000 4,495,000
Dependent variable mean 69.85 69.85 69.85 69.85 69.85 69.85

Notes: This table reports IV estimates from Equations (4) and (5) using different combinations

of fixed effects. The dependent variable is the number of visits per thousand people on the day of

exposure. Column (1) presents the baseline specification. Standard errors clustered at the county

level are reported in parentheses. ***p < 0.01; **p < 0.05; *p < 0.1.

I have thus far interpreted my estimates as the causal effects of exposure to

PM2.5. One potential concern, however, is that other harmful pollutants may be

co-transported with PM2.5, potentially confounding the estimated effect. To address

this issue, I re-estimate the main specification while including daily concentrations

of SO2, NO2, and O3 as additional controls. Table C.11 reports the results. The

coefficient on PM2.5 remains negative and statistically significant, indicating that

the main findings are not driven by co-movements with other pollutants.

The sample period ranges from January 1, 2018 to December 31, 2021, which
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includes the COVID-19 pandemic that dramatically affected individuals’ mobility

patterns. To ensure that the results are not influenced by public-health guidance

on economic activity, I add an interaction between PM2.5 and an indicator for the

COVID-19 period.24 As shown in Table C.12, the interaction indicates a dampened

effect during the COVID-19 period, although both coefficients remain significant.

This suggests that the negative impact is not solely driven by pandemic-related

restrictions.

As a final robustness check, I consider counties without satellite grid points.

In the main specification, I interpolate their PM2.5 levels using inverse distance

weighting (IDW) based on the latitude and longitude of the county centroid. Ta-

ble C.13 shows that the results remain robust when I exclude these counties from

the analysis.

7 Conclusion

This paper provides the first large-scale analysis of how PM2.5 affects daily eco-

nomic activity across the United States. Leveraging changes in wind direction as

an instrumental variable, I address the endogeneity of air pollution exposure and

find robust evidence that PM2.5 significantly reduces daily visitation rates. Specif-

ically, a 1 µg/m3 increase in PM2.5 decreases visit rates by an average of 0.29%,

translating into a nationwide annual reduction of approximately 24.6 million trips

and an economic cost exceeding $1.1 billion. The effect is not confined to the day of

exposure: activity continues to decline over the following two weeks, with cumula-

tive losses roughly doubling the contemporaneous effect before partially recovering.

The reductions are widespread across sectors, most pronounced in recreation and

entertainment, and larger for outdoor than indoor facilities. Responses also vary

significantly across demographic groups: wealthier counties and those with more

young children reduce activity more sharply, while minority populations exhibit

smaller behavioral responses, suggesting differential ability or willingness to engage

in avoidance behavior.

While this study is not without limitations, each limitation also highlights op-

portunities for future research. First, the analysis primarily captures short- and

24The COVID-19 period is defined as March 15, 2020, when many states and cities in the U.S.
began implementing lockdowns, stay-at-home orders, and other restrictions to curb the spread of
the virus, through December 10, 2020, prior to the FDA’s emergency use authorization for the
first COVID-19 vaccine.
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medium-term behavioral responses, leaving open how households adapt in the long

run—a question with important implications for cumulative welfare costs. Second,

because the data are aggregated at the county level, individual-level heterogeneity

by health status, age, or socioeconomic conditions cannot be fully explored; finer-

grained data would allow future work to better characterize these differences. Third,

the reduced-form approach captures a composite of avoidance behavior and direct

health impacts. Although these channels cannot be separately identified here, the

estimates can be interpreted as a conservative lower bound on social costs, since

they exclude the broader medical and productivity losses associated with pollution-

related illness.

Despite these limitations, this study makes several important contributions.

First, it provides the first comprehensive and nationally representative estimates

of air pollution’s causal impact on daily economic activity, extending prior work

that focused on narrower settings or specific activities. Second, the results highlight

the central role of behavioral responses: failing to account for these adjustments risks

understating the true social costs of pollution. Third, by documenting persistent

reductions in activity and heterogeneity across sectors and demographic groups, the

analysis underscores the broader welfare consequences of pollution—ranging from

losses in physical and psychological well-being to disruptions in key economic sec-

tors.25 Taken together, these findings suggest that policies improving air quality

can yield substantial gains not only through better health outcomes, but also by

sustaining the economic and social activities that underpin everyday life.

25A simple back-of-the-envelope calculation in Appendix B suggests that, even when considering
only recreation visits, the losses amount to hundreds of millions of dollars annually.
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Appendix A Mechanism Analyses

In this appendix, I provide supplementary empirical analyses of two potential mecha-

nisms through which air pollution reduces daily activities. First, individuals may re-

spond directly to pollution information, including national Air Quality Index (AQI)

categories and Action Day alerts issued by local governments. A second potential

mechanism is that individuals spend more time at home on days with poor visibil-

ity. These analyses help illustrate the role of information and perception in shaping

avoidance behavior.

Appendix A.1 Pollution Information

AQI Categories A natural source of pollution information comes from the U.S.

Environmental Protection Agency’s Air Quality Index (AQI). The AQI is a stan-

dardized scale ranging from 0 to 500 designed to communicate air quality conditions

to the public. Real-time AQI values and associated behavioral guidelines are dis-

seminated through official channels, including the EPA’s website (www.airnow.gov)

and widely used mobile applications. Table C.7 summarizes the AQI categories, the

corresponding PM2.5 concentrations, and the behavioral recommendations.

When PM2.5 levels exceed 35.5 µg/m3, corresponding to an AQI of 101, the

information system color-codes the pollution level as orange, indicating that air

quality is unhealthy for sensitive groups. Most weather apps and websites promi-

nently display advisories under these conditions (see Figure C.10). Although the

marginal increase in pollution levels around this threshold is small, pollution infor-

mation becomes much more salient to the public.

To estimate the causal effects of categorical pollution information and widely

disseminated advisories on behavior, I utilize a regression discontinuity (RD) design

with PM2.5 concentrations serving as the running variable. The analysis examines

outcomes on either side of the 35.5 µg/m3 threshold. A crucial assumption for the

validity of this approach is the absence of manipulation at this threshold, which

is reasonable since PM2.5 data are automatically recorded by air quality monitors.

Figure C.11 supports this assumption. Given that AQI advisories are based on EPA

monitor data, subsequent analyses employ monitor-based PM2.5 measurements.26

Table A.1 summarizes RD estimates across various bandwidths and kernel spec-

26Due to the absence of monitors in some counties, the analysis includes 601,894 observations
covering January 1, 2018, through December 30, 2021.
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ifications. The results indicate a negative but statistically insignificant effect of AQI

advisories on visitation rates. Similarly, Figure A.1 reveals no clear discontinuity at

the threshold. This lack of significant findings could result from limited observations

around the cutoff, as only 0.34% of data points surpass the AQI threshold of 100.

Alternatively, individuals may respond only when advisories indicate much higher

pollution levels. Previous research supports this notion, showing stronger behavioral

responses at higher pollution thresholds (e.g., AQI of 300).27

Appendix Table A.1. RD estimates of AQI advisories

(1) (2) (3) (4) (5) (6)
AQI Advisories -4.0 -3.0 -2.1 -3.0 -3.2 -1.4

(3.9) (2.7) (1.9) (3.8) (2.6) (1.8)
Kernel Triangular Triangular Triangular Uniform Uniform Uniform
Bandwidth 5 10 20 5 10 20
Dependent variable mean 75.99 75.99 75.99 75.99 75.99 75.99
Observations 691,387 691,387 691,387 691,387 691,387 691,387
Effective observations 1,939 5,744 42,595 1,987 5,863 43,567

Notes: This table presents regression discontinuity (RD) estimates of the effect of AQI advisories
on economic activity, using PM2.5 as the running variable with a cutoff at 35.5 µg/m3 (equivalent
to AQI = 101, unhealthy for sensitive groups). The dependent variable is the number of visits per
thousand people on the day of exposure. Estimates are reported for different bandwidth choices
and kernel specifications.

27For example, Neidell (2009) and Zivin and Neidell (2009) demonstrate significant responses to
smog alerts issued for ozone levels equivalent to AQI 300 in California.
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Appendix Figure A.1. Visits per 1,000 people by PM2.5 levels around the AQI
threshold

Notes: This figure shows binned averages of visitation rates against daily PM2.5 concentrations.
The vertical line marks the EPA threshold for “unhealthy for sensitive groups” (35.5 µg/m3,
AQI=101). Solid lines are polynomial fits estimated separately on each side. No discontinuity is
evident.

Action Day Alerts In addition to uniform AQI advisories, Action Day alerts are

discretionary warnings issued by local air quality management agencies when air

pollution is forecasted to reach unhealthy levels. On Action Days, governments urge

the public to reduce pollution by minimizing driving, limiting outdoor activities, and

staying indoors. The criteria and timing for Action Day alerts differ substantially

across jurisdictions, providing natural variation for evaluating their effectiveness in

influencing behavioral responses.

To systematically analyze the effects of Action Day alerts, I obtain a comprehen-

sive dataset from the EPA’s AirNow program, covering 346 reporting jurisdictions

across cities, counties, metropolitan areas, and states, representing approximately

50% of the U.S. population. To ensure consistency and avoid jurisdictional duplica-

tion, data are aggregated at the Core-Based Statistical Area (CBSA) level.

Figure C.12 demonstrates that the probability of Action Day alerts increases with

rising daily PM2.5 concentrations. However, fewer than one-fifth of high-pollution

days trigger Action Day alerts, providing variation to examine whether these alerts

independently influence economic activity, conditional on similar pollution levels.

Table A.2 presents empirical results examining the incremental effect of Action

Day alerts on economic activity. Although the estimated magnitude of Action Day
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alerts is approximately twice that of the PM2.5 effect alone, the estimates are im-

precise and statistically insignificant, likely due to the small share (around 1.8%) of

Action Days. Moreover, since Action Day alerts are issued in response to forecasted

pollution conditions and reflect local agency discretion, the estimates should also be

interpreted with caution given their endogenous nature. As an additional robustness

check, I estimate effects excluding observations with consecutive Action Days, and

the results remain very similar (Columns (3) and (4) of Table A.2).

Appendix Table A.2. Additional effect of Action Days on economic activity

All Days Exclude Consecutive Action Days

(1) (2) (3) (4)
PM2.5 (µg/m3) -0.10∗∗∗ -0.09∗∗∗ -0.12∗∗∗ -0.12∗∗∗

(0.02) (0.02) (0.03) (0.03)
Action Day Alerts -0.22 -0.15

(0.32) (0.26)
First-stage F-statistic 12.2 12.2 14.7 14.7
Dependent variable mean 79.8 79.8 80.0 80.0
Fixed effects Yes Yes Yes Yes
R2 0.88 0.88 0.87 0.87
Observations 428,352 428,352 422,983 422,983

Notes: This table reports IV estimates from Equations (4) and (5), examining the additional effect

of Action Day advisories. The dependent variable is the number of visits per thousand people at

the CBSA level on the day of exposure. All regressions include CBSA-by-month, CBSA-by-year,

day-of-week, and month-by-year fixed effects, as well as flexible weather controls. Columns (1) and

(2) report results with and without controls for Action Day advisories, while columns (3) and (4)

repeat the analysis excluding consecutive Action Day sequences. Standard errors clustered at the

CBSA level are reported in parentheses. ***p < 0.01; **p < 0.05; *p < 0.1.

Appendix A.2 Visibility

Perceptions of air quality may also be shaped by visibility. The same pollutants that

contribute to PM2.5 can also reduce visibility: airborne particles impair visibility by

altering how light is absorbed and scattered in the atmosphere, reducing the clarity

and color of what we see.28 When visibility is low, people might perceive that the

air quality is poor and choose to spend more time at home instead of going out.

To examine whether reduced visibility serves as a mechanism through which pol-

lution affects economic activity, I use satellite-based visibility data from the NCEP

28Source: https://www.epa.gov/sites/default/files/2015-05/documents/haze_brochur
e_20060426.pdf. Accessed June 10, 2024.
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North American Regional Reanalysis (NARR) database.29 I implement a three-step

procedure. First, I instrument PM2.5 using wind direction, as in Equation (5).

Second, I test whether PM2.5 causally reduces visibility by estimating:

Visibilityct = ρ · ÷PM2.5ct +X
′

ctγ + σcy + ηcm + µw + ψmy + ϵct (6)

Finally, I regress visit rates on visibility while controlling for instrumented PM2.5.

This allows me to examine whether visibility, after controlling for the direct effect of

PM2.5, provides additional explanatory power for economic activity. However, since

visibility itself is not instrumented, this approach provides correlational evidence

rather than causal estimates regarding the relationship between reduced visibility

and lower economic activity.30 Specifically, I estimate:

Yct
Popc

= λ · Visibilityct + κ · ÷PM2.5ct +X
′

ctγ + σcy + ηcm + µw + ψmy + νct (7)

The results are presented in Table A.3. Column (1) shows that PM2.5 signifi-

cantly reduces visibility: a 1 µg/m3 increase in PM2.5 leads to a 0.05 km decrease

in visibility on average.31 Column (2) indicates that reduced visibility is correlated

with lower daily economic activity: a 1 km reduction in visibility is associated with

a decrease of 0.14 visits per 1,000 people on average. These findings are consistent

with Keiser et al. (2018), who find that visitation to national parks declines on days

with poor visibility.

29See https://psl.noaa.gov/data/gridded/data.narr.html. Accessed July 18, 2024.
30Controlling for instrumented PM2.5 helps account for other behavioral or physiological chan-

nels through which pollution may directly affect economic activity.
31To account for the possibility of a nonlinear relationship between PM2.5 and visibility, I

restrict the sample to relatively clean days with PM2.5 concentrations below 15 µg/m3. As shown
in Table C.8, the estimates remain consistent in direction and magnitude, indicating that the
relationship is not driven solely by high-pollution days.
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Appendix Table A.3. Visibility as a Mechanism: Effect of PM2.5 on Visibility and
Visits

(1) (2)
Visibility (km) Visits (per 1,000 people)

Visibility (km) 0.14∗∗∗

(0.004)◊�PM2.5 (µg/m3) -0.05∗∗∗ -0.20∗∗∗

(0.01) (0.01)
First-stage F-statistic 87.36 87.36
Dependent variable mean 17.55 69.85
Fixed effects Yes Yes
R2 0.55 0.86
Observations 4,495,000 4,495,000

Notes: This table reports results from the three-step mechanism analysis. Column (1)
shows the effect of instrumented PM2.5 on visibility (Equation (6)), and Column (2) shows
the effect of visibility on visit rates, controlling for instrumented PM2.5 (Equation (7)).
All regressions include county-by-month, county-by-year, day-of-week, and month- by-
year fixed effects, as well as flexible weather controls. The dependent variable mean in
Column (1) is average visibility (in kilometers), and in Column (2) is average visits per
1,000 people. Standard errors are clustered at the county level. ***p < 0.01; **p < 0.05;
*p < 0.1.

Appendix B Welfare Analysis

To illustrate the potential welfare implications of the observed declines in daily

activities, I provide a simple back-of-the-envelope calculation. This exercise should

be interpreted with caution and viewed as a lower bound. It relies on willingness-

to-pay (WTP) values for recreation activities, which are the closest sector with

well-established valuation estimates, but do not capture the full range of affected

activities such as shopping, dining, accommodation, and healthcare.

Rosenberger (2016) reports an average per-day WTP for recreation of approx-

imately $93.89 (updated to 2022 dollars). Applying this value to the estimated

annual reduction in recreation visits (about 1.28 million trips) yields an implied

welfare loss of roughly $120 million per year.32 Because this calculation covers only

recreation—which represents 13.6% of all trips in my data—it almost certainly un-

derstates the true welfare costs of pollution-induced behavioral changes. Losses in

other large sectors such as retail trade and accommodation and food services are

32The annual reduction is calculated as 0.00641 visits per person × 331.9 million people × 12
months ≈ 1.28 million trips annually.
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not valued here, and reductions in daily activities may also carry additional health

and psychological costs (e.g., obesity, depression).

The purpose of this exercise is not to provide a precise estimate, but rather to

demonstrate that even partial valuation of lost activities produces non-trivial welfare

costs. Future research combining consumer surplus estimates across multiple sectors

would allow a more comprehensive accounting of the economic losses from pollution-

induced behavioral changes, but this is beyond the scope of this study.

Relative to the World Bank’s estimate of $886.5 billion in U.S. welfare costs from

air pollution in 2016 ($1,081 billion in 2022 USD), my figure is small. However, the

two are not directly comparable: the World Bank’s figure reflects comprehensive

health and environmental damages, whereas my calculation quantifies only economic

costs from daily activity changes. A more relevant benchmark comes from other

studies of avoidance behavior: Zhang and Mu (2018) estimate the cost of face-mask

purchases during heavily polluted periods at about $187 million, and Fan (2024)

estimate the cost of pollution-induced physical inactivity at $550 million in 2017

($656 million in 2022 USD). My back-of-the-envelope estimate for recreation alone

falls between these estimates, and the overall economic impact is likely much larger

given the broad scope of activities affected.
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Appendix C Additional Figures and Tables

(a) County-level Visit Rates

(b) County-level PM2.5 Concentration

Appendix Figure C.1. County-level visit rates and PM2.5 concentrations

Notes: This figure displays average daily county averages for the number of visits (top panel)
and PM2.5 concentration (bottom panel) from January 1, 2018, to December 30, 2021. As a
few counties do not have any visitation data, there are some missing values in the figure.
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Appendix Figure C.2. K-means clustering result

Notes: This figure displays the K-means clustering result based on latitude and longitude. As a
few counties do not have any visitation data for leisure facilities from SafeGraph, there are some
missing values in the figure. There are 20 spatial groups in total, and each of them is represented
by a different color. After clustering, πg

b in Equation (5) can vary across geographic regions.

49



Appendix Figure C.3. The relationship between wind direction and PM2.5 concen-
tration in California

Notes: The graph on the left plots the relationship between PM2.5 concentrations and wind direc-

tion in California. Wind direction describes where the wind is blowing from, with “N” indicating

north, “E” indicating east, etc. The points report coefficient estimates from a regression of PM2.5

on wind direction measured in 30-degree angle bins; wind from the west (“W”) is the omitted

reference category. The shaded area shows the 95% confidence interval. The specification includes

county-by-month, county-by-year, month-by-year, and day-of-week fixed effects, along with flexible

weather controls. This figure illustrates that winds from the Pacific Ocean (west) are associated

with lower pollution, while winds from the east and southeast are associated with higher pollution.
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Appendix Figure C.4. Strength of the first stage by geographic group

Notes: This map shows the strength of the first stage for each of the 20 geographic groups used
in the main estimation sample. Strength is measured as the difference in predicted PM2.5
concentration (µg/m3) between the most and least polluting wind direction bins, where
predictions are obtained from the first-stage specification in Equation (5). The 20 geographic
clusters are shown in Figure C.2.
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Appendix Figure C.5. Absolute effects (visits per thousand) by 2-digit NAICS codes

Notes: This figure displays the heterogeneous treatment effects of air pollution on daily ac-
tivities across various industries, categorized by their 2-digit NAICS codes. Each bar represents
an IV estimate from Equation (4) of the effect of 1-day PM2.5 exposure on same-day visits for a
particular economic sector. The percentage following each industry name indicates the share of
raw visits that the industry represents in the sample. Bars represent the estimated effects, with
horizontal lines indicating 95% confidence intervals. Industries with raw visits accounting for less
than 0.2% are omitted due to high variance. Sectors with statistically insignificant estimates are
shown in white. The relative effect as a percentage of the sector’s average same-day visits is shown
in Figure 1.

52



Appendix Figure C.6. IV estimates of effect of acute (1-day) PM2.5 on cumulative
economic activity up to 100 days following exposure

Notes: This figure displays IV estimates of the effects of a 1-day, 1 µg/m3 increase in PM2.5 on
economic activity up to 100 days after exposure. Effects are expressed as a percentage of day 0
visits. Visit rates are measured as cumulative visits over windows ranging from 1 to 100 days, as
indicated on the x-axis. Points denote the estimates, vertical lines denote the 95% confidence
intervals, and standard errors are clustered at the county level.

Appendix Figure C.7. IV estimates of the effects of acute (1-day) PM2.5 exposure
on cumulative visits per 1,000 people over one month, by sector (absolute terms)

Notes: This figure displays IV estimates of the effects of a 1-day, 1 µg/m3 increase in PM2.5 on
economic activity, disaggregated by the three largest sectors in the sample: retail trade,
accommodation and food services, and recreation. Results are shown in absolute terms (levels),
measured as cumulative visits per 1,000 people over a time window ranging from 0 to 30 days, as
indicated on the x-axis. Points show the estimates, and vertical lines indicate 95% confidence
intervals. Standard errors are clustered at the county level. Corresponding results in percentage
terms are presented in Figure 5.
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Real Estate & Leasing (13.5%) Educational Services (8.8%) Health Care (6.9%)

Other Services (5.4%) Transportation (1.8%) Manufacturing (0.9%)

Finance & Insurance (0.8%) Public Administration (0.8%) Information (0.4%)

Technical Services (0.4%) Wholesale Trade (0.4%) Construction (0.4%)

Appendix Figure C.8. IV estimates of the effects of acute PM2.5 exposure on eco-
nomic activity, by sector

Notes: Each point represents an IV estimate from Equations (4) and (5), measuring the effect

of acute PM2.5 exposure on economic activity in percentage terms across 15 industries. The

cumulative effect is measured over a time window ranging from 1 to 30 days, as indicated on

the x-axis. Shaded areas represent 95% confidence intervals. All regressions include county-by-

month, county-by-year, month-by-year, and day-of-week fixed effects, as well as flexible controls for

temperature, precipitation, wind speed, and dew point. Standard errors are clustered by county.

Some industry names are shortened to conserve space.
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(a) Higher vs Lower Income (b) Higher vs Lower Children Share

(c) Higher vs Lower White Share

Appendix Figure C.9. IV estimates of the effects of acute PM2.5 exposure on eco-
nomic activity, by demographic group (absolute terms)

Notes: Each point represents an IV estimate from Equation (4) for different subsamples, measuring

the effect of acute (1-day) PM2.5 exposure on economic activity in absolute terms (visits per

1,000 people) across demographic groups. The solid line represents counties with median income,

child population share, or white population share above the national median, while the dashed

line represents counties below the median. The cumulative effect is measured over one month

following exposure, as indicated on the x-axis. Shaded areas denote 95% confidence intervals.

All regressions include county-by-month, county-by-year, month-by-year, and day-of-week fixed

effects, along with flexible controls for temperature, precipitation, dew point, and wind speed.

Additionally, regressions incorporate leads of these weather controls, as well as two leads and two

lags of the instruments. Standard errors are clustered at the county level. Corresponding results

in percentage terms are presented in Figure 6.
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(a) when AQI ≤ 100 (b) when AQI > 100

Appendix Figure C.10. Example: air quality information in the iPhone Weather
app

Notes: This figure displays the iPhone Weather app interface when AQI ≤ 100 (left panel) and

AQI > 100 (right panel). When AQI ≤ 100, no air quality message appears at the top of

the Weather app overview, and users must scroll down to find the information. When AQI >

100, the app prominently displays an air quality warning at the top of the interface. Source:

https://osxdaily.com/2018/11/20/get-air-quality-info-iphone-weather/
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Appendix Figure C.11. No evidence of manipulation at the threshold

Notes: This figure displays the density of daily PM2.5 concentration. The vertical dashed red
line at 35.5 µg/m3 indicates the EPA-defined threshold for air quality classified as “unhealthy for
sensitive groups” (AQI = 101). The smooth distribution around this cutoff suggests no evidence
of manipulation at the threshold.
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Appendix Figure C.12. Probability of Action Day issuance near the PM2.5 threshold

Notes: This figure plots the share of county-days with an Air Quality “Action Day” advisory
against daily average PM2.5 concentration. The vertical dashed line at 35.5 µg/m3 indicates the
EPA-defined threshold for air quality classified as “unhealthy for sensitive groups.” The lower
histogram shows the distribution of PM2.5 observations in the sample.
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Appendix Table C.1. Share of raw visits by 2-digit NAICS codes

NAICS Codes Description Raw visits Share (%)
44-45 Retail Trade 9,146,929,016 24.77

72 Accommodation and Food Services 7,610,742,956 20.61
71 Arts, Entertainment, and Recreation 5,034,071,398 13.63
53 Real Estate and Rental and Leasing 4,996,089,773 13.53
61 Educational Services 3,261,648,196 8.83
62 Health Care and Social Assistance 2,543,964,413 6.89
81 Other Services 2,010,628,936 5.44

48-49 Transportation and Warehousing 676,689,537 1.83
31-33 Manufacturing 317,021,279 0.86

52 Finance and Insurance 303,659,378 0.82
92 Public Administration 279,409,983 0.76
51 Information 160,409,689 0.43
54 Professional, Scientific, and Technical Services 158,697,298 0.43
42 Wholesale Trade 136,210,405 0.37
23 Construction 130,696,514 0.35
55 Management of Companies and Enterprises 72,815,213 0.20
56 Administrative and Support and Waste Management 59,912,819 0.16
22 Utilities 28,890,736 0.08
11 Agriculture, Forestry, Fishing and Hunting 2,093,013 0.01
21 Mining, Quarrying, and Oil and Gas Extraction 185,256 0.00

Appendix Table C.2. Selected studies on the impact of air pollution on activities

Study Outcome Pollution measure Effect
Entertainment & Recreation
Fan (2024) Outdoor exercise in China 10 µg/m3 increase in PM2.5 1.4% reduction
Keiser et al. (2018) Visits to U.S. national parks 1 ppb increase in ozone 3.9% reduction
Zivin and Neidell (2009) Visits to zoos and observatory in LA Ozone alert 5–8% reduction
Janke (2014) Visits to Bristol Zoo (members) Air pollution alert 6% reduction

Retail Trade
Sun et al. (2019) Visits to shopping centers in Beijing 10% increase in PM2.5 0.1% reduction
Addoum et al. (2023) Visits to retail establishments in the US Medium-heavy smoke day 0.37% reduction

Accommodation & Food
Sun et al. (2019) Visits to restaurants in Beijing 10% increase in PM2.5 0.15% reduction
Gao et al. (2020) Visits to restaurants in Beijing 1% increase in PM2.5 0.065% reduction

Information
He et al. (2016) Movie theater admissions in China Air pollution index 2.8% reduction

Educational Services
Currie et al. (2009) School absences in Texas Additional high-CO day 5–9% increase
Chen et al. (2000) School absences in Washoe County 50 ppb increase in ozone 13% increase
Chen et al. (2000) School absences in Washoe County 1 ppm increase in CO 3.8% increase
Gilliland et al. (2001) School absences (illness) in Southern California 20 ppb increase in ozone 63% increase

Healthcare
Liu et al. (2022) Visits to health facilities in China 1 µg/m3 increase in PM2.5 1.8% reduction
Janke (2014) Hospital admissions in the UK 1% increase in ozone 0.1% increase
Ren et al. (2021) Hospital admissions in Wuhan, China 10% increase in PM2.5 1.25% increase
Dardati et al. (2024) ER visits in Chile 1 µg/m3 increase in PM2.5 0.03–0.07% increase
Deryugina et al. (2019) ER visits in the US 1 µg/m3 increase in PM2.5 0.06% increase
Schlenker and Walker (2016) Asthma ER visits in California 1 SD increase in CO 33% increase
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Appendix Table C.3. Share of raw visits in the recreation sector

NAICS Description Raw visits Share (%)
712190 Nature Parks and Other Similar Institutions 2,610,937,377 51.97
713940 Fitness and Recreational Sports Centers 908,175,772 18.08
713910 Golf Courses and Country Clubs 525,323,866 10.46
713990 All Other Amusement and Recreation Industries 187,873,033 3.74
713110 Amusement and Theme Parks 184,452,834 3.67
711211 Sports Teams and Clubs 126,947,155 2.53
712110 Museums 93,538,708 1.86
711310 Promoters of Performing Arts and Events 91,428,501 1.82
713210 Casinos (except Casino Hotels) 87,878,401 1.75
712120 Historical Sites 65,689,209 1.31
713950 Bowling Centers 56,054,357 1.12
713920 Skiing Facilities 26,600,467 0.53
712130 Zoos and Botanical Gardens 24,056,950 0.48
713930 Marinas 17,077,159 0.34
713120 Amusement Arcades 6,400,510 0.13
713290 Other Gambling Industries 4,858,269 0.10
711212 Racetracks 4,849,757 0.10
711219 Other Spectator Sports 915,133 0.02
711130 Musical Groups and Artists 528,696 0.01
711190 Other Performing Arts Companies 364,952 0.01
711510 Independent Artists, Writers, and Performers 70,944 0.00
711110 Theater Companies and Dinner Theaters 33,414 0.00
711410 Agents and Managers for Artists 30,905 0.00
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Appendix Table C.4. Share of raw visits in the health care sector

NAICS Description Raw visits Share (%)
6221 General Medical and Surgical Hospitals 602,393,987 24.73
6213 Offices of Other Health Practitioners 391,980,708 16.09
6244 Child Day Care Services 349,496,920 14.35
6211 Offices of Physicians 317,171,391 13.02
6212 Offices of Dentists 226,457,069 9.30
6231 Nursing Care Facilities (Skilled Nursing Facilities) 156,062,572 6.41

621492 Kidney Dialysis Centers 61,429,935 2.52
6223 Specialty (except Psychiatric and Substance Abuse) Hospitals 49,666,480 2.04
6233 Assisted Living Facilities for the Elderly 43,721,328 1.80

624190 Other Individual and Family Services 39,871,875 1.64
6214 Outpatient Care Centers 39,677,848 1.63
6216 Home Health Care Services 37,830,065 1.55
6215 Medical and Diagnostic Laboratories 36,241,509 1.49

624110 Child and Youth Services 21,330,836 0.88
6242 Community Food and Housing, and Emergency Relief Services 16,862,249 0.69
6219 Other Ambulatory Health Care Services 13,277,127 0.55

621498 All Other Outpatient Care Centers 13,132,241 0.54
621493 Freestanding Ambulatory Surgical and Emergency Centers 8,481,763 0.35
624120 Services for the Elderly and Persons with Disabilities 6,366,018 0.26
6222 Psychiatric and Substance Abuse Hospitals 3,974,312 0.16
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Appendix Table C.5. Heterogeneous effects of PM2.5 across demographic groups,
one-day estimates

(1) (2)
Panel A: By age group
PM2.5 (µg/m3) -0.10∗∗∗ -0.10∗∗

(0.02) (0.04)
PM2.5 × 1{Pct. Children > Median} -0.24∗∗∗

(0.05)
PM2.5 × 1{Pct. Children > 3rd Quartile} -0.36∗∗∗

(0.08)
Panel B: By income group
PM2.5 (µg/m3) -0.08∗∗∗ -0.11∗∗∗

(0.03) (0.02)
PM2.5 × 1{Income > Median} -0.18∗∗∗

(0.03)
PM2.5 × 1{Income > 3rd Quartile} -0.25∗∗∗

(0.04)
Panel C: By race group
PM2.5 (µg/m3) -0.16∗∗∗ -0.16∗∗∗

(0.02) (0.02)
PM2.5 × 1{Pct. White > Median} -0.09∗∗∗

(0.03)
PM2.5 × 1{Pct. White > 3rd Quartile} -0.16∗∗∗

(0.04)
First-stage F-statistics 83.53 83.53
Dependent variable mean 69.85 69.85
Fixed effects Yes Yes
R2 0.87 0.87
Observations 4,493,550 4,493,550

Notes: This table reports the effects of daily PM2.5 on daily activity for different demographic

groups using Equations (4) and (5). The dependent variable is the number of visits per

thousand people on the day of exposure. All regressions control for bins of mean temperature,

precipitation, wind speed, and dew point, as well as two lags of these weather controls.

Fixed effects include county-by-year, county-by-month, day-of-week, and month-by-year fixed

effects. The dummy variable 1{Pct. Children > Median} equals 1 (1{Pct. Children > 3rd

Quartile} = 1) if the percentage of children in county c is above the national median (third

quartile). Similarly, 1{Income > Median} and 1{Income > 3rd Quartile} are dummies for

per capita personal income, and 1{Pct. White > Median} and 1{Pct. White > 3rd Quartile}
are dummies for the percentage of the white population. Standard errors are clustered at the

county level. ***p < 0.01; **p < 0.05; *p < 0.1.
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Appendix Table C.6. Robustness to PM2.5 cutoff restrictions

(1) (2)
Visits (per 1,000 people) Visits (per 1,000 people)

PM2.5 (µg/m3) -0.35∗∗∗ -0.25∗∗∗

(0.03) (0.02)
PM2.5 Cutoff (µg/m3) 15 25
First-stage F-statistics 602.14 805.22
Dependent variable mean 69.85 69.85
Fixed effects Yes Yes
R2 0.86 0.87
Observations 3,522,564 4,300,033

Notes: This table shows robustness to restricting the sample to days with PM2.5 concentra-

tions below specific thresholds. Column (1) restricts to days with PM2.5 below 15 µg/m3,

well below the EPA’s Air Quality Index threshold for official warnings. Column (2) restricts

to days with PM2.5 below 25 µg/m3. The dependent variable is the number of visits per 1,000

people on the day of exposure. All regressions include county-by-month, county-by-year, day-

of-week, and month-by-year fixed effects, as well as flexible weather controls. Standard errors

clustered at the county level are reported in parentheses. ***p < 0.01; **p < 0.05; *p < 0.1.

Appendix Table C.7. AQI categories and corresponding PM2.5 concentrations

Category Designated color AQI PM2.5 concentration (µg/m3)
Good Green 0-50 0.0-12.0
Moderate Yellow 51-100 12.1-35.4
Unhealthy for Sensitive Groups Orange 101-150 35.5-55.4
Unhealthy Red 151-200 55.5-150.4
Very Unhealthy Purple 201-300 150.5-250.4
Hazardous Maroon 301-500 250.5-500

Source: National Ambient Air Quality Standards for Particle Pollution Fact Sheet. Available at:
https://www.epa.gov/sites/default/files/2016-04/documents/2012_aqi_factsheet.pdf.
Accessed February 25, 2023.
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Appendix Table C.8. Visibility as a Mechanism: Robustness to PM2.5 Restrictions

(1) (2)
Visibility (km) Visits (per 1,000 people)

Visibility (km) 0.12∗∗∗

(0.01)◊�PM2.5 (µg/m3) -0.06∗∗∗ -0.37∗∗∗

(0.01) (0.02)
First-stage F-statistics 747.15 679.80
Dependent Variable Mean 17.52 69.85
Fixed Effects Yes Yes
R2 0.60 0.86
Observations 3,522,564 3,522,564

Notes: This table reports results when restricting the sample to days with PM2.5

concentrations below 15 µg/m3. Column (1) shows the effect of instrumented PM2.5

on visibility, and Column (2) shows the effect of visibility on visit rates, controlling

for instrumented PM2.5. All regressions control for temperature, precipitation, wind

speed, and dew point, including two lags of each weather variable. The dependent

variable mean in Column (1) refers to visibility in kilometers, and in Column (2) to

the average number of visits per 1,000 people. Fixed effects include county-by-year,

county-by-month, day-of-week, and month-by-year. Standard errors are clustered at

the county level. ***p < 0.01; **p < 0.05; *p < 0.1.

Appendix Table C.9. Robustness to Including Different Forms of Outcome

Visits (per 1,000 people) log(visit rate) ×100 IHS(visits) ×100
(1) (2) (3)

PM2.5 (µg/m3) -0.20∗∗∗ -0.38∗∗∗ -0.38∗∗∗

(0.01) (0.02) (0.02)
First-stage F-statistics 87.36 87.36 87.36
Dependent variable mean 69.85 69.85 69.85
Fixed effects Yes Yes Yes
R2 0.86 0.89 0.99
Observations 4,495,000 4,494,488 4,495,000

Notes: This table reports OLS and IV estimates based on Equation (4) and Equation (5),

with the dependent variable transformed using either the log of visit rates or the inverse

hyperbolic sine (IHS) of visits. The main specification uses visits per thousand people on the

day of exposure as the outcome. All regressions include county-by-month, county-by-year,

day-of-week, and month-by-year fixed effects, as well as flexible weather controls. Standard

errors clustered at the county level are reported in parentheses. ***p < 0.01; **p < 0.05;

*p < 0.1.
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Appendix Table C.10. Robustness to alternative clustering levels

(1) (2) (3) (4)
PM2.5 (µg/m3) -0.20∗∗∗ -0.20∗∗∗ -0.20∗∗∗ -0.20∗∗

(0.01) (0.07) (0.06) (0.06)
Clustering level(s) County Geographic group State County and year
First-stage F-statistics 87.36 87.36 87.36 87.36
R2 0.86 0.86 0.86 0.86
Observations 4,495,000 4,495,000 4,495,000 4,495,000
Dependent variable mean 69.85 69.85 69.85 69.85

Notes: This table reports IV estimates from Equations (4) and (5) with standard errors clustered

at different levels. The dependent variable is the number of visits per 1,000 people on the day of

exposure. All regressions include county-by-month, county-by-year, day-of-week, and month-by-

year fixed effects, as well as flexible weather controls. Standard errors, clustered at the level(s)

indicated in each column, are reported in parentheses. Geographic groups are shown in Figure C.2.

***p < 0.01; **p < 0.05; *p < 0.1.

Appendix Table C.11. Robustness of IV estimates to additional pollutant controls

(1) (2) (3) (4) (5)
PM2.5 (µg/m3) -0.20∗∗∗ -0.18∗∗∗ -0.15∗∗∗ -0.13∗∗∗ -0.13∗∗∗

(0.01) (0.01) (0.02) (0.02) (0.02)
SO2 (ppb) 0.009 -0.08 -0.03

(0.06) (0.06) (0.08)
NO2 (ppb) -0.07∗∗ -0.03

(0.03) (0.04)
O3 (ppb) 0.12∗∗∗ 0.12∗∗∗

(0.01) (0.01)
First-stage F-statistic 87.36 87.36 87.36 87.36 87.36
R2 0.86 0.86 0.86 0.86 0.87
Observations 4,495,000 4,495,000 4,495,000 4,495,000 4,495,000
Dependent variable mean 69.85 69.85 69.85 69.85 69.85

Notes: This table reports IV estimates from Equations (4) and (5) with additional pollutant

controls. The dependent variable is the number of visits per 1,000 people on the day of exposure.

Column (1) presents the baseline specification without additional pollutants. Columns (2)–(5)

sequentially add SO2, NO2, O3, or all three pollutants as controls. All pollutants are instrumented

using wind direction. Standard errors clustered at the county level are reported in parentheses.

***p < 0.01; **p < 0.05; *p < 0.1.
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Appendix Table C.12. Robustness to the COVID-19 pandemic

(1) (2)
Visits (per 1,000 people) Visits (per 1,000 people)

PM2.5 (µg/m3) -0.20∗∗∗ -0.25∗∗∗

(0.01) (0.02)
PM2.5 × 1{During COVID} 0.15∗∗∗

(0.04)
First-stage F-statistics 87.36 87.36
Dependent variable mean 69.85 69.85
Fixed effects Yes Yes
R2 0.86 0.86
Observations 4,495,000 4,495,000

Notes: This table presents IV estimates from Equations (4) and (5) for different periods.

Column (1) reports the baseline results. Column (2) adds an interaction between PM2.5 and

an indicator for the COVID-19 period (1{During COVID}), defined as March 15, 2020, to

December 10, 2020 (before the FDA issued an emergency use authorization for the COVID-

19 vaccine). The dependent variable is the number of visits per 1,000 people on the day of

exposure. All regressions include county-by-month, county-by-year, day-of-week, and month-

by-year fixed effects, as well as flexible weather controls. Standard errors clustered at the

county level are reported in parentheses. ***p < 0.01; **p < 0.05; *p < 0.1.

Appendix Table C.13. Robustness to exclusion of counties without satellite data

(1) With IDW (2) Without IDW
Visits (per 1,000 people) Visits (per 1,000 people)

PM2.5 (µg/m3) -0.20∗∗∗ -0.17∗∗∗

(0.01) (0.02)
First-stage F-statistics 87.36 17.86
Dependent variable mean 69.85 66.04
Fixed effects Yes Yes R2

0.86 0.88
Observations 4,495,000 1,684,900

Notes: This table reports the effect of daily PM2.5 on economic activity using only counties

with satellite data. Column (1) presents the baseline specification, where counties without

satellite data are interpolated using IDW. The dependent variable is the number of visits per

1,000 people on the day of exposure. All regressions include county-by-month, county-by-year,

day-of-week, and month-by-year fixed effects, as well as flexible weather controls. Standard

errors clustered at the county level are reported in parentheses. ***p < 0.01; **p < 0.05;

*p < 0.1.
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