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Abstract

I investigate the strategic behavior of polluters in the US. Under the Clean
Air Act, air quality monitor data determine whether an area meets environmen-
tal standards. Because wind carries pollution, monitors detect more pollution
from upwind sources and less from downwind sources. This disparity incen-
tivizes polluters to emit less when they are upwind of a monitor, and more
when they are downwind. I identify such strategic behavior among US coal-
fired power plants, finding that a one-standard-deviation increase in favorable
wind direction—when wind blows pollutants away from monitors—leads to a
0.8% (172 lbs) and 0.4% (54 lbs) increase in sulfur dioxide (SO2) and nitrogen
dioxide (NOx) emissions, respectively. At the same time, fuel input remains
unchanged, but the emission rate rises, suggesting that power plants temporar-
ily turn off pollution control equipment. Additionally, the increase is more
pronounced when power plants are in a non-attainment county, located in the
same state as the monitor, or surrounded by fewer nearby polluters. These find-
ings suggest that polluters facing stricter regulatory pressure are more likely to
respond strategically when conditions are favorable.
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1 Introduction

Environmental regulation in the United States has traditionally been implemented

through a federalist framework. Under the US Clean Air Act, the federal government

sets the National Ambient Air Quality Standards (NAAQS), whereas state and lo-

cal governments monitor air pollution levels to enforce those standards. Despite the

theoretical efficiencies of federalism noted by Oates (1972), this decentralized struc-

ture may also create opportunities for local governments or polluters—who prioritize

maximizing local economic growth or profits—to evade compliance through strategic

responses (Grainger and Schreiber, 2019; Zou, 2021; Mu et al., 2021; Morehouse and

Rubin, 2021). Understanding these behaviors is crucial for balancing local monitoring

with consistent and effective enforcement of environmental regulations.

Polluters may have an incentive to strategically adjust emissions based on their

likelihood of being detected by air quality monitors for two reasons. First, emission

control is costly—not only due to installation expenses, but also because ongoing

costs for electricity, water, and steam often exceed the annual depreciation of the

equipment (Wu et al., 2015). Additionally, air pollutants can travel long distances

with the wind (Schlenker and Walker, 2016; Deryugina et al., 2019; Jia and Ku, 2019;

Anderson, 2020; Borgschulte et al., 2022), influencing the likelihood that emissions

will be detected by local monitoring stations. As a result, firms are less likely to bear

the costs of pollution control when wind conditions disperse emissions away from

monitors, but they are more likely to reduce emissions when the wind increases their

chances of being detected.

In this paper, I study how polluters strategically adjust emissions based on their

chances of increasing measured air pollution in the area. Specifically, I identify short-

term strategic emissions adjustments in response to wind direction among coal-fired

power plants1. I find that a one-standard-deviation increase in favorable wind di-

rection (i.e., when the wind blows pollutants away from monitors) leads to a 0.8%

and 0.4% increase in sulfur dioxide (SO2) and nitrogen dioxide (NOx) emissions, re-

spectively. This corresponds to an average increase of 172 lbs of SO2 and 54 lbs of

NOx. In contrast, no such strategic response is observed for their cleaner counter-

1Coal-fired power plants have historically accounted for a substantial share of air pollution in the
U.S. From 1997 to 2017, they were responsible for 90% of SO2 emissions and 76% of NOx emissions
from the U.S. electric power industry. Their emissions include particles, mercury, and acid gases such
as sulfur dioxide. The U.S. Environmental Protection Agency has implemented multiple regulations
to control power plant emissions, including the Acid Rain Program, the Mercury and Air Toxics
Standards (MATS), and the Clean Power Plan.
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parts, natural gas power plants. These results are robust to various weather controls,

fixed effects, radius definitions, and alternative ways of measuring the relative wind

direction between power plants and monitors. Given that monitoring stations are

often placed in relatively cleaner areas (Grainger and Schreiber, 2019), my estimates

may be lower than the actual effects.

I also examine which polluters strategically adjust emissions. The EPA determines

whether counties—rather than individual polluters—meet air quality standards by us-

ing monitoring data to classify them as “attainment” or “non-attainment” based on

comparisons with the NAAQS. State and local governments are responsible for en-

forcing these standards and may face regulatory consequences for non-compliance.

To explore whether polluters under direct regulatory enforcement strategically emit

more when conditions are favorable, I compare power plants based on whether they

are located in the same state as their nearest monitor or in a different state. I find

that strategic behavior is more pronounced when a power plant and its nearest mon-

itor are within the same state. Quantitatively, when restricting the sample to power

plants located within the same state, a one-standard-deviation increase in favorable

wind direction raises the estimated level of disguised pollution from 0.8% to 1.19%

for SO2 and from 0.4% to 1% for NOx. In contrast, the effect is not statistically

significant when the nearest monitor is in a different state, suggesting that polluters

do not strategically adjust emissions if the monitor lacks direct authority. Similarly,

polluters in non-attainment counties exhibit stronger strategic behavior, suggesting

that stricter regulatory pressure increases incentives to manipulate emissions. I also

find that polluters in low-polluter-density areas are more likely to engage in strate-

gic behavior, likely because emissions are easier to trace to a specific source, giving

them a stronger incentive to exploit favorable wind conditions when possible. In

contrast, power plants in attainment counties and those in denser industrial areas

exhibit weaker or no strategic response. These findings highlight how regulatory en-

forcement and monitoring structures shape firms’ incentives to manipulate emissions

under favorable conditions.

I then examine the underlying mechanisms through which power plants increase

emissions on days with favorable wind conditions. I find that favorable wind direction

has no significant effect on fuel input or electricity generation. However, the emission

rate for SO2 and NOx (pollution emitted per unit of fuel burned) follows the same

strategic pattern, suggesting that the observed increase in emissions is, at least partly,

driven by power plants partially turning off pollution control equipment. In contrast,
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there is no significant effect on the CO2 emission rate, as power plants typically are

not required to have specific emission control equipment for CO2. Quantitatively, a

one-standard-deviation increase in favorable wind direction raises the SO2 emission

rate by 0.003 lbs/mmBtu and the NOx rate by 0.0004 lbs/mmBtu, which accounts

for approximately 128% of the total increase in SO2 emissions and 62% of the total

increase in NOx emissions. 2. This indicates that the increase in emission rates is the

primary driver of the overall rise in emissions.

This paper contributes to the current literature in two main ways. First, it adds

to the discussion on the gaps between regulation enforcement and actual pollution

abatement (Ghanem and Zhang, 2014; Greenstone et al., 2022; Oliva, 2015; Reynaert,

2021). There is emerging literature on agents’ strategic responses to environmental

regulations. For example, Zou (2021) documents increases in polluting activities dur-

ing unmonitored times. Agarwal et al. (2023) provide evidence that firms increase

SO2 emission levels after sunset under the cover of darkness. This paper contributes

to this stream of literature by showing that even with a nationwide automated mon-

itoring systems, strategic behaviors could still occur. Most previous studies focus on

firms’ responses to regular events, while I provide evidence that plants also react to

less predictable changes, such as shifts in wind direction. My estimates are roughly

half the magnitude of those reported by Zou (2021) in percentage terms, suggesting

either that firms respond less strongly or that fewer firms engage in strategic behav-

ior when events are less predictable.These wind patterns are likely overlooked by the

federally regulators, who implicitly assume data from ambient air quality monitors

are representative of the local region.

Second, this paper contributes to the increasingly important literature on wind

directions and environmental justice. Minority, low-income, and indigenous popu-

lations are more likely to reside downwind of the pollution source, often bearing a

disproportionate burden of environmental harms and adverse health outcomes3. Pre-

vious research on wind direction and power plants typically focus on the long-run

effects. For example, Heblich et al. (2021) provide evidence that historical pollu-

tion and prevailing winds induce neighborhood sorting and make eastern downwind

suburbs notably poorer. Morehouse and Rubin (2021) show that decision-makers

disproportionately sited power plants to reduce counties’ downwind pollution expo-

sure. By contrast, I focus on short-run effects of wind direction and find that power

2These percentages are calculated using the mean heat input: 77, 552.85× 0.003/172 = 135% for
SO2 and 77, 552.85× 0.0004/54 = 57% for NOx.

3https://www.epa.gov/power-sector/power-plants-and-neighboring-communities
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plants increase pollution when they are downwind of monitoring stations. Using sim-

ulations from the Intervention Model for Air Pollution (InMAP), I find suggestive

evidence that the extra emissions from strategic pollution disproportionately affect

counties with a higher Black population share. Given that the black population are

more exposed to pollution (Tessum et al., 2021; Banzhaf and Walsh, 2008) and the

negative health effect is larger for them (Alexander and Currie, 2017; Gillingham and

Huang, 2021), this strategic emission may exacerbate environmental injustice and

health disparities.

The rest of the paper is organized as follows. Section 2 provides a brief background

on air quality monitoring and power plants in the US. Section 3 outlines a concep-

tual framework for understanding how wind directions can affect pollution emissions.

Section 4 describes the data and provides summary statistics. Section 5 introduces

the empirical strategy in detail. Section 6 presents the main results. Section 7 covers

robustness checks. Section 8 concludes.

2 Background

2.1 Ambient Air Quality Monitoring

In the United States, environmental regulation historically follows a federalist ap-

proach. Under the Clean Air Act (CAA), the Environmental Protection Agency

(EPA) is responsible for setting safety standards in the form of maximum concen-

tration levels for outdoor air pollution. These are the National Ambient Air Qual-

ity Standards (NAAQS), which regulate six criteria pollutants: particulate matter

(PM2.5 and PM10), ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), lead

(Pb), and carbon monoxide (CO). Local governments coordinate plans and monitor

air quality to ensure these standards are met within their jurisdictions. This sparse

network of monitoring sites measures local air quality across the US. Among these

monitoring networks, the NCore network plays a critical role in providing consistent

multi-pollutant air quality measurements. Established in 2011, NCore monitors are

designed to track key pollutants, including SO2, NO2, and PM2.5, which are major

emissions from power plants. The NCore network’s primary objectives include timely

public air quality reporting, supporting long-term health assessments for NAAQS re-

views, and ensuring compliance by establishing attainment and non-attainment areas

through NAAQS comparisons.

The EPA evaluates data from these monitoring sites to classify counties as either
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attainment or non-attainment. Counties labeled as non-attainment face significantly

higher regulatory costs, impacting both state and local governments as well as in-

dustries within these areas. States with non-attainment counties must formulate a

State Implementation Plan, outlining specific regulations to bring these regions into

compliance. These regulations often include the adoption of advanced pollution con-

trol technologies and the imposition of strict emission limits on existing industries.

Furthermore, new industrial projects in non-attainment areas must implement the

“lowest achievable emission rate” technology, regardless of cost.

2.2 Power Plants

In the US, fossil fuels are the most common fuel type for electricity production and

coal-fired power plants are a leading source of air pollution: coal combustion is the

largest single source of sulfur dioxide (SO2) emissions and the second largest source

of nitrogen oxides (NOx)
4. It also produces significantly more greenhouse gases, such

as carbon dioxide (CO2).

To reduce emissions from power plants, various programs have been implemented,

including the Acid Rain Program (ARP), Mercury and Air Toxics Standards (MATS),

and the Cross-State Air Pollution Rule (CSAPR). These programs have significantly

reduced SO2 and NOx emissions from power plants over the past several decades.

From 1995 to 2022, average emissions of SO2 and NOx from power plants fall by over

90 percent (Figure 1).

3 Conceptual Framework

To motivate my empirical analysis, I present a conceptual framework that helps ra-

tionalize how wind directions can affect firms’ behaviors. I assume a power plant’s

production function is Q(K), where K represents capital. Production has declining

returns to scale, i.e., QK > 0 and QKK < 0.

Producing output Q also generates emissions E as a by-product. Emissions in-

crease with Q. These emissions can be reduced by employing emissions control tech-

nologies at cost C.5 The final emission level is therefore a continuously differentiable

4SO2 and NOx contribute to the formation of fine particulate matter (PM). NOx emissions also
lead to the formation of ground-level ozone.

5Since the installation of emission control equipment is mandatory for power plants in the US,
we ignore the already incurred fixed installation costs. Therefore, the cost C here represents only
the marginal cost of operation and maintenance, which is continuous.
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Figure 1. Annual Percent Reduction in Power Plant Emissions Relative to 1995 (1995-
2022). Source: Clean Air Markets Program Data

function E(Q,C). I assume that EQ > 0, EQQ < 0, EC < 0, and ECC > 0.

The readings of nearby pollution monitors are denoted by R(E,W ), where E

represents the emission from the power plant, and W is the relative wind direction.

An increase in emissions E from the nearby power plant would lead to higher readings

R; thus, RE > 0. A larger W represents more favorable wind directions (i.e., the wind

is blowing from the monitors to the plant, causing pollutants to be blown away from

the monitor), so that RW < 0. If the readings of the monitor exceed the standards,

the plant bears a cost of s, reflecting the consequences of stringent regulations, such

as the need to adopt advanced pollution control technologies and comply with more

rigorous emission limits.

Given this setup, the firm chooses its capital input for production and emission

control input to maximize its profit. Formally, it solves the problem:

max
K,C

π = p×Q(K)− r ×K − v × C − s×R(E(Q,C),W )

where p represents the market output price, r represents the capital price, v represents

the cost of operating the emission control equipment, and s represents the cost of

higher pollution levels. The first-order conditions for the firm’s profit maximization
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problem are therefore:

∂π

∂K
= p×QK − r − s×RE × EQ ×QK = 0

∂π

∂C
= −v − s×RE × Ec = 0

Applying the implicit function theorem, I derive

∂K

∂W
= − s× FEW × EQ ×QK

s× FE × EQ ×QKK − p×QKK

∂C

∂W
= −FEW × EC

FE × ECC

.

Since FE > 0, FEW < 0, EC > 0, and ECC < 0, it follows ∂C
∂W

< 0. This implies that

when the wind comes from a more favorable direction W (i.e., W increases), the firm

would decrease emission control input C, and thus emissions would increase.

4 Data

The data used in the paper come from three main sources: pollution emission data

from the Continuous Emission Monitoring Systems (CEMS), EPA monitor charac-

teristics from the EPA’s Air Quality System (AQS), and weather data from ECMWF

Reanalysis v5 (ERA5). The linkage and further details are described below.

Pollution Emission Data CEMS are the set of equipment used to measure the

concentration or emission rate of gases or particulate matter. These systems function

by analyzing pollutants and converting these measurements into results that comply

with emission standards, using computer programs. I obtain the CEMS data from the

EPA’s Clean Air Markets Program Data, which provides detailed emissions informa-

tion at the unit-hourly level for each facility. Under the Clean Air Markets Division’s

regulatory programs, power plants are required to install CEMS that automatically

measure and upload hourly end-of-pipe emission data to the government. This al-

lows the government to monitor emissions and detect any violations of the prescribed

standards. I use unit-daily CEMS data includes emissions of SO2 and NOx, spanning

from 2011 to 2022. I then match this data with the power sector data crosswalk6 to

obtain the latitude and longitude of each power plant.

6https://www.epa.gov/power-sector/power-sector-data-crosswalk. Accessed Feb 2, 2024.
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Air Quality Monitors To determine the relative locations of coal-fired power

plants and nearby air quality monitors, I obtain data from the EPA’s Air Quality

System (AQS) for the years 2011 to 2022. The AQS annual summary files include the

latitude and longitude of each monitoring site, along with the years during which each

site was established and operational. I match daily emission data from each power

plant with the nearest active NCore monitoring sites7. For each plant-monitor pair,

I calculate the distance and relative direction based on their geographic coordinates

to assess how emissions disperse under varying wind conditions.

Weather Temperature, precipitation, wind direction and wind speed data are

obtained from the ERA5 reanalysis database. ERA5 data are reported on a 0.25 ×
0.25 degrees grid (≈ 27km × 27km). I construct plant-level daily weather data by

matching each coal-fired power plant with its nearest weather grid based on its latitude

and longitude. Specifically, wind direction and wind speed are construct using the

East-West wind vector (u-wind) and the North-South wind vector (v-wind) provided

in the database8 Wind direction is defined as the direction the wind is blowing from.

Construction of the Downwind Index I construct a continuous variable indi-

cating the relative wind direction of a power plant and nearest monitors for each day,

using a three-step procedure. First, I measured the direction of each power plant

relative to the nearest NCore air quality monitor, by using an angle called “azimuth”

ranging from 0°to 360°.9 Second, I construct the wind vector azimuth, defined as

where the wind blows towards. This is calculated by subtracting 180° from the direc-

tion where the wind blows from, as defined in Section 4, Weather10. Third, I generate

7The NCore network is a federally managed multipollutant monitoring system designed to collect
high-quality measurements for tracking air quality trends and ensuring compliance with the NAAQS.
More details can be found at: https://www.epa.gov/amtic/ncore-monitoring-network. Accessed Feb
15, 2025/.

8Note that wind directions and speed are computed from the zonal (u) and meridional (v) wind
components. Since these are vectors and cannot be averaged or interpolated numerically, I first
average the u and v components and then derive the wind speed and direction from the resulting
vector.

9The azimuth from point B (the power plant) to point A (the monitors) is the angle formed by

the vector A⃗B on a horizontal plane, with north as the 0°reference point. Moving clockwise in a
360-degree circle, azimuths of 90°, 180°, or 270°indicate that B is due East, South, or West of A,
respectively.

10For example, a wind blowing from due West is calculated as a wind with a direction of 270°.
I subtract 180°from the 270°and get a 90°wind direction; I add 360°if the subtraction used by the
conversion results in a negative value. Similar to the azimuth for the power plant and monitoring
station, a wind vector azimuth of 90°, 180°, or 270°means that a wind blows towards due East, due
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the relative wind direction indicator using the cosine of the difference between the

direction from a monitor to a power plant (θplant) and the wind direction, defined as

the direction toward which the wind blows (θwind). Formally, the Downwind Index is

defined as cos(| θplant − θwind |). Intuitively, this index equals 1 when the wind blows

exactly from the monitor to the power plant, indicating that the plant is strictly

downwind of the monitor; it equals 0 when the plant is perpendicular to the wind di-

rection; and it equals -1 when the plant is strictly upwind of the monitor. Panels (a),

(b), and (c) in Figure 2 show cases where the index equals 1, 0, and -1, respectively.

Figure 2. Downwind Index Illustration

(a) Downwind Index = 1 (b) Downwind Index = 0 (c) Downwind Index = -1

Notes: This figure illustrates the Downwind Index, calculated as cos(| θplant − θwind |). (a)
A Downwind Index of 1 indicates that the power plant is directly downwind of the monitor,
meaning the wind is blowing from the power plant towards the monitor. (b) A Downwind
Index of 0 represents a perpendicular orientation, where the wind direction is perpendicular to
the vector pointing from the power plant to the monitor. (c) A Downwind Index of -1 denotes
that the power plant is directly upwind of the monitor, meaning the wind is blowing from the
power plant towards the monitor.

Summary Statistics Table 1 presents summary statistics for the main estimation

sample, which includes plant-day observations from 2011 to 2022 for coal-fired power

plants in the contiguous U.S. The average downwind index is -0.03 with a standard

deviation of 0.72, indicating that there is substantial variation in wind direction. Coal-

fired power plants also have much higher emissions and emission rates compared to

gas-fired power plants.11

Figure A1 shows the spatial distribution of coal-fired and gas-fired power plants

in the U.S., while Figure A2 displays the mean downwind index for each county.

The fact that most indices are centered around 0 confirms that wind direction varies

South, or due West, respectively.
11Full summary statistics for gas-fired power plants are in Table A1.
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considerably within counties; if values were consistently near 1 or -1, it would suggest

stable wind patterns, potentially introducing bias into the analysis.

Table 1. Summary Statistics

Variables N Mean St. Dev. Min Max
Emissions
SO2 (lbs) 686,194 23,188.68 41,933.32 0.00 1,636,826.00
NOx (lbs) 720,253 10,350.71 11,347.70 0.00 345,728.00
CO2 (short tons) 680,392 7,969.82 5,880.96 0.00 37,978.00
Heat Input (mmBtu) 720,253 75,623.63 55,655.18 0.00 370,153.10
Gross Load (MWh) 684,009 9,161.66 5,590.50 0.00 35,084.00
SO2 Rate (lbs/mmBtu) 686,122 0.36 0.72 0.00 219.60
NOx Rate (lbs/mmBtu) 720,253 0.17 0.21 0.00 92.88
CO2 Rate (tons/mmBtu) 680,320 0.10 0.02 0.00 1.21

Weather
Precipitation (mm) 720,253 3.04 6.88 0.00 420.89
Mean Temperature (°C) 720,253 14.04 11.04 −31.42 37.67
Wind Direction Towards (degrees) 720,253 158.94 110.12 0.00 360.00
Wind Speed (m/s) 720,253 2.73 1.54 0.00 16.11

Location Relative to Monitor
Distance (miles) 720,253 32.79 15.42 3.77 59.91
Direction (degrees) 720,253 161.55 104.87 1.33 359.10
Downwind Index 720,253 −0.03 0.72 −1.00 1.00
Same State (0/1) 720,253 0.79 0.41 0.00 1.00

Notes: This table reports the summary statistics for coal-fired power plants in my sample. Direction
is the degree of a vector pointing from the monitor to the power plant, and the downwind index is
defined as in Section 4, Construction of the Downwind Index.

5 Empirical Strategy

My objective is to identify plants’ strategic behavior under more or less favorable

conditions. Specifically, I study the effect of wind patterns on plant emissions. My

identification assumption is that conditional on high dimensional location and time-

fixed effects and other atmospheric controls, wind direction is unrelated to other

determinants of a plant’s pollution emissions. The primary estimation equation is:

Eit = β ×Downwind Indexit +Xitγ + µi + ηsm + λmy + ϵit (1)
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where

Downwind Indexit = cos
(
| θplanti − θwindit |

)
(2)

where Eit is the outcome variable, representing the daily emissions (including SO2

and NOx) from plant i on date t; Downwind Indexit is a continuous index ranging

from -1 to 1 for plant i on date t, as defined in Section 4. θplantiy is the vector pointing

from a monitor to a nearby power plant i in year y,12 and θwindit i is the direction

that the wind is blowing toward at plant i on date t. I expect β > 0 because when

polluters are downwind of a nearby air quality monitor (i.e., Downwind Indexit > 0),

they have an incentive to emit more since their pollution is less likely to be detected;

vice versa, when they are upwind of a nearby monitor (i.e., Downwind Indexit < 0),

they are more likely to emit less to avoid regulatory scrutiny.

µi represents plant fixed effects, capturing plant-specific characteristics; ηsm rep-

resents state-by-month fixed effects, controlling for seasonal variations in electricity

demand and wind directions; λsy represents state-by-year fixed effects, capturing

state-level regulations and emission trends. Xit represents a flexible set of daily

weather controls, including temperature categorized into 10 bins, precipitation cate-

gorized into 4 bins, and wind speed in quartiles. The coefficient of interest, β, captures

the average change in Eit on downwind days, conditional on weather, plant, and date

fixed effects. The sample is restricted to coal-fired power plants from 2011 to 2022.

Standard errors are clustered at the plant level.

6 Results

6.1 Main Effects

I first examine whether coal-fired power plant strategically increase emissions on days

with favorable wind directions (i.e, when the wind blows pollutants away from nearby

monitors). Table 2 presents the results from estimating Equation (1) using facility-

level panel data from 2011 to 2022 with different fixed effects. Panel A shows the

result for SO2, and Panel B shows the result for NOx. All the coefficients are positive

and statistically significant, suggesting that favorable wind direction increase coal-

fired power plant emissions. Quantitatively, a one-standard-deviation increase in the

downwind index leads to a 0.8% increase in SO2 emissions13 and a 0.4% increase in

12I only include operating monitors in year y, so the location of the monitor is updated yearly.
13This is calculated using the standard deviation for the downwind index: 0.71× 244.88/23189 =

0.8%
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NOx emissions.14 This corresponds to an average increase of 172 lbs of SO2 and

54 lbs of NOx. These effects are statistically significant across various fixed effects

specifications.

In contrast, Table A2 presents results for natural gas power plants, which serve

as a placebo test. Unlike coal-fired power plants, natural gas plants are cleaner and

subject to less regulatory pressure, meaning they have little incentive to manipulate

emissions based on wind direction. Consistent with this expectation, the results show

no statistically significant change in emissions for natural gas plants in response to

wind direction.

Table 2. Effect of Wind Directions on Pollution Emissions

(1) (2) (3) (4)
Panel A: SO2

Downwind Index 244.88∗∗ 188.91∗∗ 190.70∗∗ 241.65∗∗

(96.618) (80.402) (75.214) (103.78)
DV mean (lbs) 23,189 23,189 23,189 23,189
R2 0.66 0.67 0.72 0.66
Observations 686,194 686,194 686,194 686,194

Panel B: NOx

Downwind Index 57.94∗∗ 41.14∗∗ 47.22∗ 52.87∗

(24.82) (18.51) (24.52) (27.02)
DV mean (lbs) 10,351 10,351 10,351 10,351
R2 0.71 0.73 0.77 0.70
Observations 720,253 720,253 720,253 720,253
Facility FE Yes Yes Yes
State-month FE Yes
Month-year FE Yes Yes
Facility-month FE Yes
State-month-year FE Yes
Month FE Yes
Year Fe Yes

Notes: This table reports the regression results using equation (1) with varying fixed effects.

The dependent variable is the emissions for power plant unit i on date t. Controls include

fixed effects, as well as a flexible function of temperature, precipitation, and wind speed.

Standard errors are clustered at the facility level. *** p<0.01, ** p<0.05, * p<0.1.

14Calculated as 0.71× 57.94/10351 = 0.4%
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6.2 Mechanism

Turning Off Emission Control Equipment The combustion of fuels inevitably

generates air pollution. To mitigate this, the U.S. government has implemented vari-

ous policies that either mandate or incentivize industrial firms, particularly coal-fired

power plants, to upgrade their boiler technologies and improve fuel standards. How-

ever, even with these advancements, exhaust gases can still contain pollutant levels

that exceed regulatory limits. To address this, environmental regulators require pol-

luting firms to install end-of-pipe pollutant scrubbers (see Figure A4 for an example),

which are designed to significantly reduce the concentration of pollutants in emissions.

In addition to the initial installation costs, the operation of these scrubbers en-

tails substantial variable costs, including labor and materials. The marginal cost of

operating scrubbers is estimated to be between $84 and $265 per ton of SO2 removed

(Stoerk, 2018). Because these end-of-pipe scrubbers are typically stand-alone equip-

ment that can be switched on and off during production, firms are incentivized to turn

off the scrubbers under certain conditions to save on operating costs. When scrubbers

are turned off, the untreated exhaust gases result in higher emissions compared to

when pollutant removal processes are active. For example, Karplus and Wu (2023)

shows that environmental inspections prompt power plants to operate their existing

scrubbers, resulting in a decrease in SO2 during the onsite period.

To investigate whether the observed increase in emissions is (at least partly) due

to power plants turning off pollution control equipment to reduce costs, I estimate

the emission rate (pollution emitted per unit of fuel burned) using Equation (1). As

shown in Table 3, the emission rates of SO2 and NOx both increase when power

plants are relatively downwind of a nearby monitor, suggesting that power plants

may be partially turning off their emission control equipment to save costs.

As a placebo test, I also examine changes in the CO2 emission rate. Unlike SO2

and NOx, emission control technology for CO2 is less widely used, so power plants

cannot alter its CO2 emission rate in the short term. As a result, the emission-to-heat

input ratio for CO2 remains relatively stable. Consistent with this, Table 3 shows no

statistically significant change in the CO2 emission rate.
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Table 3. Effect of Wind Directions on Emission Rates

(1) (2) (3)
SO2 rate NOx rate CO2 rate

Downwind Index 0.004∗∗ 0.0006∗∗ 0.00002
(0.002) (0.0002) (0.00003)

Facility FE Yes Yes Yes
State-month FE Yes Yes Yes
Month-year FE Yes Yes Yes
DV Mean 0.36 lbs/mmBtu 0.17 lbs/mmBtu 0.10 tons/mmBtu
R2 0.54 0.42 0.86
Observations 686,122 720,253 680,320

Notes: This table reports the regression results using equation (1). The dependent

variable is input or output in log form in unit i on date t. Controls include facility, state-

by-month and state-by-year fixed effects, as well as a flexible function of temperatures,

precipitation and wind speed. Standard errors are clustered at the facility level. ***

p<0.01, ** p<0.05, * p<0.1.

Increasing Output Besides turning off emission control equipment, emissions may

also increase as a result of higher output. To examine whether the increase in pollution

is driven by increased output, I estimate the difference using Equation (1) for a power

plant’s input and output separately. As shown in Table 4, the estimates for heat input,

gross load (i.e., electricity generated), steam load and CO2 emissions are all positive

but not statistically significant. This suggests that changes in input and output do

not account for much of the observed increase in emissions.
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Table 4. Effect of Wind Directions on Output and Input

(1) (2) (3) (4)
Heat Input Gross Load Steam Load CO2

Downwind Index 50.01 2.725 39.59 5.409
(88.04) (9.838) (23.58) (9.753)

Facility FE Yes Yes Yes Yes
State-month FE Yes Yes Yes Yes
Month-year FE Yes Yes Yes Yes
DV Mean 75,623 9,001 8,787 7,970
R2 0.92 0.90 0.92 0.92
Observations 720,253 625,139 95,069 680,392

Notes: This table reports the regression results using equation (1). The dependent

variable is average input or output per hour in log form in plant i on date t. Controls

include facility-by-month and date fixed effects, as well as a flexible function of tem-

peratures, precipitation, wind speed, dew points. Standard errors are clustered at the

facility level. *** p<0.01, ** p<0.05, * p<0.1.

6.3 Regulatory Pressure

Understanding the underlying nature of strategic behavior is essential for assessing

how regulatory and monitoring structures influence polluters’ actions. A natural

starting point is a county’s regulatory and monitoring status. In this section, I con-

duct a heterogeneity analysis by splitting the sample based on three key factors: (1)

whether the polluter and monitor are in the same state, subjecting the polluter to

direct regulatory oversight; (2) whether the polluter is in a non-attainment county;

and (3) whether the polluter operates in a low-polluter-density area.

Same-state Local governments monitor air pollution to demonstrate compliance

with National Ambient Air Quality Standards (NAAQS) set by the federal govern-

ment. They coordinate plans and oversee air quality to ensure these standards are met

within their jurisdictions. When a power plant is downwind of an in-state monitor,

regulators have less incentive to enforce strict pollution controls since the pollution is

carried away. Conversely, when a power plant is upwind of a monitor within the same

state, its emissions are more likely to be detected, giving local governments stronger

incentives to enforce reductions. As a result, power plants may be more cautious and

reduce emissions to avoid regulatory scrutiny. However, when a power plant’s nearest

monitor is in a different state, local regulators lack the authority to enforce pollution

controls, making strategic emission adjustments less likely.
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To examine whether polluters under direct regulatory enforcement strategically

emit more when conditions are favorable, I compare power plants based on whether

their nearest monitor is in the same state or a different state. As shown in columns

(1) and (2) of Table 5, when the power plant and monitor are in the same state (76%

of the data), the level of disguised pollution increases from 0.8% to 1.19% for SO2

and from 0.4% to 1% for NOx. In contrast, the effect is not statistically significant

when they are in different states, suggesting that polluters do not strategically adjust

emissions if the nearby monitor has no direct authority.

Table 5. Effect of Wind Directions on Pollution Emissions - Same vs. Different State

Same State Different State

(1) (2) (3) (4)
SO2 NOx SO2 NOx

Downwind Index 306.82∗∗∗ 74.164∗∗∗ 51.812 -14.232
(116.38) (27.117) (114.18) (31.738)

DV Mean (lbs) 25,197 10,650 16,109 9,258
R2 0.67 0.72 0.50 0.63
Observations 534,537 565,539 151,657 154,714
Facility FE Yes Yes Yes Yes
State-year FE Yes Yes Yes Yes
Month-year FE Yes Yes Yes Yes

Notes: This table reports the regression results using equation (1). The dependent

variable is the emission in unit i on date t. Controls include facility, state-by-year and

state-by-month fixed effects, as well as a flexible function of temperatures, precipitation

and wind speed. Standard errors are clustered at the facility level. *** p<0.01, **

p<0.05, * p<0.1.

Non-attainment Status A non-attainment status results in substantial regulatory

costs for both local governments and polluters. Polluters in non-attainment jurisdic-

tions face much stricter regulations, including more frequent inspections and higher

fines (Blundell et al., 2020). These penalties have been shown to cause significant

losses in firm productivity (Greenstone et al., 2012).

The cost of compliance with non-attainment status has also led to strategic be-

havior. For example, Mu et al. (2021) find that local governments strategically turn

off their air quality monitors to avoid regulatory costs, with this practice being more

prevalent in non-attainment areas. Similarly, Zou (2021) find that pollution gaps

tend to emerge in counties that have experienced non-attainment designation. When

a power plant operates in a non-attainment county, it faces stricter regulations and
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greater pressure to comply. Consequently, when an opportunity arises to engage in

strategic behavior to reduce costs, firms may take advantage of it whenever possible.

To examine how strategic responses vary by non-attainment status, I split the

sample into attainment and non-attainment counties. Table 6 shows that the response

is stronger in non-attainment counties. A one-standard-deviation increase in the

relevant variable raises SO2 emissions by 249.23 lbs and NOx emissions by 59.24 lbs.

In attainment counties, the effect is smaller and less statistically significant, with SO2

significant only at the 0.1 level and NOx not statistically significant.

Table 6. Effect of Wind Directions on Pollution Emissions - Nonattainment vs.
Attainment Counties

Nonattainment Counties Attainment Counties

(1) (2) (3) (4)
SO2 NOx SO2 NOx

Downwind Index 351.03∗∗∗ 83.427∗∗ 187.95∗ 36.143
(126.88) (33.724) (95.026) (31.896)

DV Mean (lbs) 30,678 10,988 15,753 9,751
R2 0.68 0.69 0.60 0.75
Observations 341,849 349,455 344,345 370,798
Facility FE Yes Yes Yes Yes
State-year FE Yes Yes Yes Yes
Month-year FE Yes Yes Yes Yes

Notes: This table reports the regression results using equation (1). The dependent

variable is the emission in unit i on date t. Controls include facility, state-by-year and

state-by-month fixed effects, as well as a flexible function of temperatures, precipitation

and wind speed. Standard errors are clustered at the facility level. *** p<0.01, **

p<0.05, * p<0.1.

Polluter Density Air pollution can travel long distances, making it difficult to pin-

point the source of emissions when multiple polluters operate nearby. In such cases,

regulators may struggle to attribute changes in air quality to a specific firm, reducing

the likelihood of enforcement actions. However, in areas with only one major pol-

luter, it is easier to assign responsibility for pollution levels. As a result, firms in less

industrially dense areas may have a stronger incentive to exploit favorable wind con-

ditions. On days with a favorable wind direction, these firms can emit more without

immediate regulatory consequences. In contrast, on days with an unfavorable wind

direction, they face greater pressure to maintain lower emissions to avoid detection.

To test this hypothesis, I divide the sample into counties with fewer polluters
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(below the median) and counties with more polluters (above the median). As shown in

Table 7, polluters in less industrially dense counties (48% of the data) exhibit stronger

strategic behavior. When the number of polluters is below the median, disguised

pollution increases from 0.8% to 1.7% for SO2 and from 0.4% to 0.67% for NOx. In

contrast, counties with more polluters (52% of the data) show no significant strategic

response. This suggests that polluters in less industrially dense areas are more likely

to exploit favorable wind conditions, as they face greater regulatory pressure on days

without such conditions.

Table 7. Effect of Wind Directions on Pollution Emissions - Fewer vs. More Polluters

Fewer Polluters More Polluters

(1) (2) (3) (4)
SO2 NOx SO2 NOx

Downwind Index 420.36∗∗ 89.373∗∗ 90.554 34.800
(170.58) (34.907) (89.318) (33.364)

DV Mean (lbs) 17,963 9,512 28,065 11,110
R2 0.62 0.75 0.67 0.68
Observations 331,249 342,394 354,945 377,859
Facility FE Yes Yes Yes Yes
State-year FE Yes Yes Yes Yes
Month-year FE Yes Yes Yes Yes

Notes: This table reports the regression results using equation (1). The dependent

variable is the emission in unit i on date t. Controls include facility, state-by-year and

state-by-month fixed effects, as well as a flexible function of temperatures, precipitation

and wind speed. Standard errors are clustered at the facility level. *** p<0.01, **

p<0.05, * p<0.1.

6.4 Environmental Justice

In the previous section, I showed that polluters strategically respond to monitoring.

However, directly linking these estimates to environmental justice is challenging be-

cause, while power plants increase emissions under favorable conditions, it is unclear

how this emission gap affects different geographical regions and demographic groups.

To address this, I turn to simulations from the Intervention Model for Air Pollution

(InMAP),15 which models how emissions of SO2 and NOx are transported across the

U.S. (Tessum et al., 2017).

15The InMAP model is available for download from https://github.com/spatialmodel/inmap/

releases/tag/v1.9.6. The evaluation data used in my estimation is from Tessum et al. (2019).
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Since InMAP requires annual emission inputs, I construct plant-specific estimates

of the total excess emissions attributable to strategic behavior. I follow a two-step

procedure. First, for each power plant, I use wind direction data to compute a

downwind-weighted total over the year, where fully downwind days contribute the

most and fully upwind days contribute nothing.16 This proxies how often a plant

faces favorable monitoring conditions throughout the year. Second, I multiply this

downwind-weighted total by the estimated increase in emissions on favorable days,

as derived from the earlier heterogeneity analysis. For instance, a plant in a non-

attainment county is estimated to emit an additional 351.09 lbs of SO2 on a fully

favorable day. If its annual downwind-weighted total is 90, the resulting annual

excess emission input to InMAP is 351.09×90 = 31, 598 lbs. I then simulate pollutant

transport and population exposure using InMAP for each power plant and aggregate

the results to examine how this excess pollution is distributed across counties in the

U.S.

Figure 3 presents a map of the increase in PM2.5 resulting from a one-standard-

deviation rise in the downwind index over one year. Figure A3 shows the distribution

of SO2 and NOx,which closely resemble the PM2.5 patterns, as they are influenced

by the same atmospheric conditions (e.g., wind, temperature).

16Specifically, I use strictly upwind days (with a downwind index of 1) as the baseline, assuming
no strategic emissions occur under these conditions. I then assign a weight of 1 to days with
perpendicular wind direction (index = 0), and a weight of 2 to fully downwind days (index = 1),
reflecting the increasing likelihood of strategic emissions as wind direction shifts toward the monitor.
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Figure 3. Increases in PM2.5 Induced by Strategic Emissions

0−25% 25−50% 50−75% 75−100%

Notes: This map illustrates the distribution of pollutants simulated using InMAP models.

The black crosses represent the locations of coal-fired power plants. The colors indicate the

concentration quantiles (0–25%, 25–50%, 50–75%, 75–100%), with darker colors representing

higher air pollutant concentrations.

Next, I calculate the mean Black population share and per capita income in coun-

ties grouped by PM2.5 increase quintiles. Figure 4 provides suggestive evidence that

extra emissions from strategic pollution disproportionately affect counties with a

higher Black population share, although the relationship with income is less clear.

Given that Black populations are more exposed to pollution (Tessum et al., 2021;

Banzhaf and Walsh, 2008) and experience greater negative health effects (Alexander

and Currie, 2017; Gillingham and Huang, 2021), this strategic emission behavior may

exacerbate environmental injustice and health disparities.
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Figure 4. Demographic Characteristics by PM2.5 Exposure Increase Deciles

(a) BlackShare (b) Income

6.5 The Role of Wind Speed

Air pollutants are transported by wind, and higher wind speeds allow them to travel

further. Therefore, on days with higher wind speeds, if a power plant is downwind

of a monitor, more pollutants are carried away from the monitor. Conversely, if a

power plant is upwind, more pollutants are likely to reach the monitor, increasing the

measured air pollution in the area.

To test whether strategic behavior in power plant emissions is more pronounced

at higher wind speeds, I divided the data into five parts based on wind speed quintiles

and estimated Equation 1 separately for each quintile. As shown in 5, for both SO2

and NOx, the effects are primarily driven by days with wind speeds in the highest

quintile. At very low wind speeds, pollutants tend to remain localized, limiting firms’

ability to take advantage of wind direction. At higher wind speeds, pollutants disperse

more quickly, allowing firms to confidently manipulate emissions while minimizing

regulatory risk.
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Figure 5. Heterogeneity across Wind Speed

(a) SO2 (b) NOx

Notes: This figure reports the heterogeneity of the estimates for four different subsamples,

each including only days that fall within a specific wind speed quartile. The magnitude of the

emission gap is largest when the sample is limited to days with high wind speeds.

7 Robustness Checks

I conduct several additional analyses to check the robustness of the baseline results.

First, I check the robustness of the baseline results with respect to (1) different defini-

tions of downwind direction, (2) different distance thresholds for sample selection, (3)

different comparison regions, and (4) different sets of fixed effects or weather controls.

Then, I conduct a placebo test using randomly assigned downwind days.

7.1 Alternative Specifications

In the main specification, downwind index is a continuous variable, defined as the

cosine of power plant’s relative direction to the monitors and the direction wind

blows to: cos(| θplant − θwind |), with details provided in Section 4. In this section,

I create a binary variable indicating whether a power plant is downwind of nearby

monitors. This variable is equal to one if | θplant − θwind |< 45◦ and zero otherwise,

as illustrated by the yellow region in Figure 6. Similarly, I generate a binary variable

for being upwind of nearby monitors. To do this, I create a vector pointing from

the power plant to the monitor θmonitor, and the upwind dummy is equal to one if

| θplant − θwind |< 45◦ and zero otherwise, as shown by the pink region in Figure 6.
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Then I estimate the following equation:

Eit = β1 ×Downwindit + β2 × Upwindit +Xitγ + µi + ηsm + λsy + ϵit (3)

Figure 6. Definition of Binary Downwind and Upwind Indicators

Notes: This figure illustrates the creation of binary variables that indicate whether a power plant
is downwind or upwind of nearby monitors on a certain day. The downwind variable is equal to
one if the angular difference between the direction from the monitor to the power plant (θplant)
and the wind direction (θwind) is less than 45° ( | θplant − θwind |< 45◦ ), as shown by the yellow
region. Similarly, the upwind variable is set to one if the angular difference between the direction
from the power plant to the monitor (θmonitor) and the wind direction (θwind) is less than 45° (
| θmonitor − θwind |< 45◦ ), as illustrated by the pink region.

As shown in Table 8, the estimates based on alternative definitions are similar to

the main results: power plants strategically emit less when they are upwind and more

when they are downwind of nearby monitors. This implies that the main specification

is robust to different definitions of upwind and downwind directions.
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Table 8. Robustness to Binary Downwind and Upwind

SO2 NOx

(1) (2) (3) (4) (5) (6)
Binary Upwind -229.27∗∗ -277.62∗∗ -87.665∗∗ -106.55∗∗

(105.60) (117.91) (36.863) (42.665)
Binary Downwind 147.35 226.68 57.941 88.217∗

(131.18) (139.40) (42.941) (47.689)
Facility FE Yes Yes Yes Yes Yes Yes
State-Month FE Yes Yes Yes Yes Yes Yes
Month-Year FE Yes Yes Yes Yes Yes Yes
DV mean (lbs) 22,701 22,701 22,701 10,809 10,809 10,809
R2 0.65 0.65 0.65 0.71 0.71 0.71
Observations 753,752 753,752 753,752 787,811 787,811 787,811

Notes: This table reports the regression results using Equation (3). The dependent variable

is the emission for unit i on date t. Controls include facility, state-by-month, and state-by-

year fixed effects, as well as flexible functions of temperature, precipitation, and wind speed.

Standard errors are clustered at the facility level. *** p<0.01, ** p<0.05, * p<0.1.

Furthermore, I use a 60-mile radius to identify nearby monitors in the main spec-

ification. To test the robustness of this choice, I estimate the model using alternative

distance thresholds of 20, 40, 60, 80, 100, and 120 miles.Table 9 demonstrates robust-

ness across different radii and suggests a potential inverted U-shaped pattern in the

estimated coefficients. At very short distances (e.g., 20 miles), the strategic effect is

not statistically significant, likely because emissions are close enough to affect monitor

readings regardless of wind direction. As the radius increases, the coefficients rise,

peaking around 60–80 miles, and then decline slightly. This decline is likely due to the

monitor being too far away, such that polluters no longer perceive it as a meaningful

regulatory constraint and are therefore less likely to respond strategically.
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Table 9. Robustness to Different Radii

(1) (2) (3) (4) (5) (6)
Panel A: SO2

Downwind Index 21.644 232.30∗ 244.88∗∗ 234.73∗∗∗ 192.60∗∗∗ 131.75∗∗

(53.19) (136.80) (96.62) (81.00) (70.30) (62.23)
DV mean (lbs) 12,649 21,038 23,189 22,266 23,272 22261
R2 0.82 0.73 0.66 0.66 0.69 0.67
Observations 173,647 434,066 686,194 913,356 1,108,249 1,298,994

Panel B: NOX

Downwind Index 20.883 55.641∗∗ 57.943∗∗ 67.934∗∗ 77.223∗∗∗ 49.641∗

(19.70) (27.97) (24.82) (28.89) (28.37) (27.85)
DV mean (lbs) 6,683 9,698 10,351 10,718 11,198 11,400
R2 0.79 0.72 0.71 0.71 0.72 0.70
Observations 185,945 459,876 720,253 970,145 1,190,632 1,389,857
Radii (miles) 20 40 60 80 100 120
Facility FE Yes Yes Yes Yes Yes Yes
State-month FE Yes Yes Yes Yes Yes Yes
Month-year FE Yes Yes Yes Yes Yes Yes

Notes: This table reports the regression results using Equation (1) with varying distance thresh-

olds of 20 miles, 40 miles, 60 miles, 80 miles, 100 miles, and 120 miles. The dependent variable

is the emission for unit i on date t. Controls include facility, state-by-month and month-by-

year fixed effects, as well as flexible functions of temperature, precipitation and wind speed.

Standard errors are clustered at the facility level. *** p<0.01, ** p<0.05, * p<0.1.

Lastly, to test the robustness of the model specification, I estimate regressions

using different estimation methods and various weather controls. Table 10 presents

the results when the emission variable is modeled in three different forms beyond in

levels: log,17 log(y+1), and Poisson. Table 11 shows the results with different types

of weather controls. The findings are consistent across these alternative specifica-

tions, suggesting that the main estimates are robust to different modeling choices

and variations in weather controls.

17In this case, observations with zero emissions are excluded, which is equivalent to focusing only
on power plants that are operating on a certain day.
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Table 10. Robustness to Different Outcome

SO2 NOx

(1) (2) (3) (4) (5) (6)
Downwind Index 0.83∗ 0.80∗ 0.008∗∗ 0.40∗ 0.37∗ 0.004∗∗

(0.45) (0.46) (0.004) (0.22) (0.22) (0.002)
Outcome log(y) log(y+1) Poisson log(y) log(y+1) Poisson
Facility FE Yes Yes Yes Yes Yes Yes
State-Month FE Yes Yes Yes Yes Yes Yes
Month-Year FE Yes Yes Yes Yes Yes Yes
DV Mean 52,214 54,943 49,675 19,414 19,452 19,013
R2 0.85 0.85 0.87 0.86
Observations 751,120 753,752 753,752 787,645 787,811 787,811

Notes: This table reports the regression results using Equation (1) with different outcome:

log, log(y+1), and Poisson. Coefficient estimates and standard errors are multiplied by 100 to

represent effects in percentage points. Controls include facility, state-by-month, and state-by-

year fixed effects, as well as flexible functions of temperature, precipitation, and wind speed.

Standard errors are clustered at the facility level. *** p<0.01, ** p<0.05, * p<0.1.

Table 11. Robustness to Different Forms Weather Controls

SO2 NOx

(1) (2) (3) (4) (5) (6)
Downwind Index 242.22∗∗∗ 217.54∗∗ 232.89∗∗∗ 75.95∗∗ 64.49∗ 74.50∗∗

(89.28) (90.34) (88.83) (33.11) (33.50) (33.67)
Forms of Weather Controls Bin Linear No Bin Linear No
Facility FE Yes Yes Yes Yes Yes Yes
State-Month FE Yes Yes Yes Yes Yes Yes
Month-Year FE Yes Yes Yes Yes Yes Yes
DV mean (lbs) 22,701 22,701 22,701 10,809 10,809 10,809
R2 0.65 0.65 0.65 0.71 0.71 0.71
Observations 753,752 753,752 753,752 787,811 787,811 787,811
Notes: This table reports the regression results using Equation (1) with different forms of

weather controls: bins, linear controls, and no weather controls. The dependent variable is

emissions in log form for unit i on date t. Coefficient estimates and standard errors are multi-

plied by 100 to represent effects in percentage points. Controls include facility, state-by-month,

and state-by-year fixed effects, as well as flexible functions of temperature, precipitation, and

wind speed. Standard errors are clustered at the facility level. *** p<0.01, ** p<0.05, * p<0.1.

7.2 Placebo Test

I conduct a placebo test based on random wind directions. I repeat the process

1000 times for each pollutant and plot the distributions of the estimated coefficients
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(Figure 7). In both panels, the placebo coefficients are small, centered around zero,

and significantly different from the baseline estimates (represented by the red solid line

on the right). This figure provides further evidence of the validity of the empirical

strategy and confirms that it is indeed the actual wind direction that leads to a

significant increase in emissions.

Figure 7. Placebo Tests

(a) SO2 (b) NOX

Notes: This figure plots the placebo test based on randomly generated wind directions. In
the placebo test, I repeat the practice 1000 times and plot the distribution of the estimated
coefficients. The red solid line at the right is the baseline estimate using equation (1).

8 Conclusion

Based on the location of coal-fired power plants, air quality monitors, and wind

patterns between 2011 and 2022, I find strong empirical evidence that local polluters

strategically adjust their end-of-pipe emissions in response to wind direction and

wind speed. Specifically, polluters emit more pollution when they are downwind of

nearby monitors, especially on days with high wind speeds or when the monitor is

located within the same state. This emission gap is robust to various definitions of

downwind and upwind, as well as different model specifications. This finding provides

new evidence of local strategic behavior that could undermine the effectiveness of

environmental regulations and lead to inefficiencies under decentralized management.

This study is not without its limitations. First, because my sample is limited

to power plants in the U.S., I cannot examine whether similar strategic behavior

occurs in other polluting industries. Second, my findings do not directly address

the broader question of whether current environmental regulations are appropriately

calibrated. There is an inherent trade-off between pollution abatement efforts and

economic growth, and it is possible that strategic polluting behavior could have some
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cost-saving benefits if few people live downwind of a power plant (Li, 2025), resulting

in lower abatement costs with minimal adverse health effects. However, this possi-

bility requires further investigation. Third, it remains unclear who is driving this

strategic behavior—the local government or the polluter. The observed emission gap

could result from polluters adjusting emissions to avoid detection, or it could reflect

leniency from local governments that know increased emissions will not impact their

monitoring data.

Despite these limitations, this paper makes several contributions. First, it en-

riches the literature on the gap between regulatory enforcement and actual pollution

abatement by examining a previously overlooked factor: the short-term impact of

wind direction on plant emissions. Building on prior research on strategic responses

(Zou, 2021; Mu et al., 2021; Agarwal et al., 2023; Grainger and Schreiber, 2019; More-

house and Rubin, 2021; He et al., 2020), these findings more broadly emphasize the

importance for regulators to be cautious and aware of potential strategic responses

to regulation.

Second, this paper contributes to the field of environmental justice. A broad

literature demonstrates the correlation or causation between pollution exposure and

income (Carson et al., 1997; Banzhaf and Walsh, 2008; Banzhaf et al., 2019). Further-

more, Grainger and Schreiber (2019) find that low-income neighborhoods are also less

likely to be monitored. My findings extend this literature by demonstrating that low-

income groups may be disproportionately affected on downwind days. When these

communities are located downwind and not properly monitored, they are less likely

to receive regulatory attention—even when ambient pollution levels exceed federal

standards.

Under the Clean Air Act, in situ monitoring data is considered the gold standard

for compliance. As the federal government establishes standards and local govern-

ments monitor their own pollution levels, this federalist framework empowers local

authorities to strategically respond to regulations. Existing literature suggests that

utilizing remote sensing data or mobile monitors could enhance the current moni-

toring system (Grainger and Schreiber, 2019; Zou, 2021). Moreover, incorporating

CEMS data into compliance assessments can further reduce strategic behavior, im-

prove the comprehensiveness of the monitoring system, and more effectively protect

human health, especially in low-income communities.
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A Appendix Tables and Figures

Appendix Table A1. Summary Statistics for Natural Gas Power Plants

Variables N Mean St. Dev. Min Max
Emissions
SO2 (lbs) 1,205,642 1,321.73 9,544.26 0.00 319,554
NOx (lbs) 1,304,092 1,198.79 2,997.58 0.00 96,726
CO2 (short tons) 1,201,090 2,228.04 1,222.53 0.00 21,606.00
Heat Input (mmBtu) 1,304,092 34,115.23 17,790.67 0.00 364,471.20
Gross Load (MWh) 1,664,562 2,395.61 2,330.18 0.00 17,706.00
SO2 Rate (lbs/mmBtu) 1,205,642 0.04 0.29 0.00 5.93
NOX Rate (lbs/mmBtu) 1,304,092 0.04 0.08 0.00 5.47
CO2 Rate (lbs/mmBtu) 1,201,090 0.06 0.03 0.00 9.69

Weather
Precipitation (mm) 1,304,092 2.81 6.86 0.00 204.07
Temperature (°C) 1,304,092 17.24 10.02 −30.58 40.54
Wind Direction (degrees) 1,304,092 161.67 110.52 0.0002 360.00
Wind Speed (m/s) 1,304,092 2.50 1.45 0.004 15.04

Relative Locations
Distance (km) 1,304,092 42.29 27.93 2,601.11 99,777.41
Direction (degrees) 1,304,092 170.11 108.56 0.61 359.67
Downwind Index 1,304,092 −0.04 0.72 −1.00 1.00
Same State (0/1) 1,304,092 0.88 0.32 0 1

Notes: This table reports the summary statistics for gas-fired power plants in my sample. Direction
is the degree of a vector pointing from the monitor to the power plant, and the downwind index is
defined as in Section 4, Construction of the Downwind Index.
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Appendix Table A2. Effect of Wind Directions on Pollution Emissions for Natrual
Gas Power Plants

(1) (2) (3)
Panel A: SO2

Downwind Index 19.796 18.140 35.98
(29.075) (21.791) (39.103)

DV mean (lbs) 1,322 1,322 1,322
R2 0.51 0.73 0.49
Observations 1,205,642 1,205,642 1,205,642

Panel B: NOX

Downwind Index 7.1081 7.0474 8.2121
(5.1320) (4.3483) (6.4237)

DV mean (lbs) 1,199 1,199 1,199
R2 0.72 0.76 0.72
Observations 1,304,092 1,304,092 1,304,092
Facility FE Yes Yes Yes
State-Month FE Yes Yes
Month-year FE Yes Yes
State-year FE Yes

Notes: This table reports regression results based on equation (1) for natural gas power
plants, with varying fixed effects. The dependent variable is the logarithm of emissions
for power plant unit i on date t. Controls include fixed effects and a flexible function of
temperature, precipitation, and wind speed. Standard errors are clustered at the facility
level. *** p<0.01, ** p<0.05, * p<0.1.
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Appendix Figure A1. Distribution of Power Plants in the US

(a) Coal-fired Power Plants

(b) Gas-fired Power Plants

Notes: Panel (a) shows the spatial distribution of coal-fired power plants, while Panel (b) shows
the spatial distribution of gas-fired power plants. The size of each point represents the capacity
of the power plant, with larger points indicating higher capacities.
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Appendix Figure A2. County Average Downwind Index

(a) Map

(b) Histogram

Notes: This figure presents two visualizations of the downwind index, as defined in equation (2).
Panel (a) illustrates the spatial distribution of the county-level average downwind index, while
Panel (b) displays a histogram of downwind index values. The majority of indices are centered
around 0, indicating substantial variation in wind direction within each county. Conversely, if
most indices were close to 1 or -1, it would imply that power plants are consistently downwind
or upwind, suggesting highly stable and directional wind patterns, which would be problematic
for my analysis.
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Appendix Figure A3. Increases in Air Pollutants Induced by Strategic Emissions

(a) SO2

0−25% 25−50% 50−75% 75−100%

(b) NOx

0−25% 25−50% 50−75% 75−100%

Notes: This map illustrates the distribution of SO2 (panel A) and NOx (panel B), simulated

using the InMAP model. The black crosses represent the locations of coal-fired power plants.

The colors indicate the concentration quantiles (0–25%, 25–50%, 50–75%, 75–100%), with

darker colors indicating higher concentrations.
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Appendix Figure A4. Scrubber Example

Source: https://users.highland.edu/ jsullivan/principles-of-general-chemistry-v1.0/s08-07-the-
chemistry-of-acid-rain.html
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